Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 319
Filtrar
1.
Cell ; 184(17): 4430-4446.e22, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34416147

RESUMO

Alphaviruses cause severe arthritogenic or encephalitic disease. The E1 structural glycoprotein is highly conserved in these viruses and mediates viral fusion with host cells. However, the role of antibody responses to the E1 protein in immunity is poorly understood. We isolated E1-specific human monoclonal antibodies (mAbs) with diverse patterns of recognition for alphaviruses (ranging from Eastern equine encephalitis virus [EEEV]-specific to alphavirus cross-reactive) from survivors of natural EEEV infection. Antibody binding patterns and epitope mapping experiments identified differences in E1 reactivity based on exposure of epitopes on the glycoprotein through pH-dependent mechanisms or presentation on the cell surface prior to virus egress. Therapeutic efficacy in vivo of these mAbs corresponded with potency of virus egress inhibition in vitro and did not require Fc-mediated effector functions for treatment against subcutaneous EEEV challenge. These studies reveal the molecular basis for broad and protective antibody responses to alphavirus E1 proteins.


Assuntos
Alphavirus/imunologia , Anticorpos Antivirais/imunologia , Reações Cruzadas/imunologia , Proteínas Virais/imunologia , Liberação de Vírus/fisiologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Neutralizantes/imunologia , Antígenos Virais/imunologia , Linhagem Celular , Vírus Chikungunya/imunologia , Vírus da Encefalite Equina do Leste/imunologia , Encefalomielite Equina/imunologia , Encefalomielite Equina/virologia , Mapeamento de Epitopos , Feminino , Cavalos , Humanos , Concentração de Íons de Hidrogênio , Articulações/patologia , Masculino , Camundongos Endogâmicos C57BL , Modelos Biológicos , Ligação Proteica , RNA Viral/metabolismo , Receptores Fc/metabolismo , Temperatura , Vírion/metabolismo , Internalização do Vírus
2.
Immunity ; 56(11): 2621-2634.e6, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37967533

RESUMO

There is growing appreciation for neuraminidase (NA) as an influenza vaccine target; however, its antigenicity remains poorly characterized. In this study, we isolated three broadly reactive N2 antibodies from the plasmablasts of a single vaccinee, including one that cross-reacts with NAs from seasonal H3N2 strains spanning five decades. Although these three antibodies have diverse germline usages, they recognize similar epitopes that are distant from the NA active site and instead involve the highly conserved underside of NA head domain. We also showed that all three antibodies confer prophylactic and therapeutic protection in vivo, due to both Fc effector functions and NA inhibition through steric hindrance. Additionally, the contribution of Fc effector functions to protection in vivo inversely correlates with viral growth inhibition activity in vitro. Overall, our findings advance the understanding of NA antibody response and provide important insights into the development of a broadly protective influenza vaccine.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Humanos , Influenza Humana/prevenção & controle , Neuraminidase , Infecções por Orthomyxoviridae/prevenção & controle , Vírus da Influenza A Subtipo H3N2 , Epitopos , Anticorpos Antivirais , Anticorpos Monoclonais , Vacinação , Glicoproteínas de Hemaglutininação de Vírus da Influenza
3.
Immunol Rev ; 310(1): 61-75, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35599324

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes coronavirus disease 2019 (COVID-19), has shifted our paradigms about B cell immunity and the goals of vaccination for respiratory viruses. The development of population immunity, through responses directed to highly immunogenic regions of this virus, has been a strong driving force in the emergence of progressively mutated variants. This review highlights how the strength of the existing global virology and immunology networks built for HIV vaccine research enabled rapid adaptation of techniques, assays, and skill sets, to expeditiously respond to the SARS-CoV-2 pandemic. Allying real-time genomic surveillance to immunological platforms enabled the characterization of immune responses elicited by infection with distinct variants, in sequential epidemic waves, as well as studies of vaccination and hybrid immunity (combination of infection- and vaccination-induced immunity). These studies have shown that consecutive variants of concern have steadily diminished the ability of vaccines to prevent infection, but that increasing levels of hybrid immunity result in higher frequencies of cross-reactive responses. Ultimately, this rapid pivot from HIV to SARS-CoV-2 enabled a depth of understanding of the SARS-CoV-2 antigenic vulnerabilities as population immunity expanded and diversified, providing key insights for future responses to the SARS-CoV-2 pandemic.


Assuntos
COVID-19 , Infecções por HIV , Vacinas Virais , Anticorpos Antivirais , Humanos , SARS-CoV-2 , África do Sul , Vacinação
4.
Emerg Infect Dis ; 30(1): 168-171, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38147510

RESUMO

We detected high titers of cross-reactive neuraminidase inhibition antibodies to influenza A(H5N1) virus clade 2.3.4.4b in 96.8% (61/63) of serum samples from healthy adults in Hong Kong in 2020. In contrast, antibodies at low titers were detected in 42% (21/50) of serum samples collected in 2009. Influenza A(H1N1)pdm09 and A(H5N1) titers were correlated.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Virus da Influenza A Subtipo H5N1 , Vacinas contra Influenza , Influenza Aviária , Influenza Humana , Adulto , Animais , Humanos , Neuraminidase , Anticorpos Antivirais
5.
BMC Immunol ; 25(1): 29, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38730320

RESUMO

BACKGROUND: Several PD-1 antibodies approved as anti-cancer therapies work by blocking the interaction of PD-1 with its ligand PD-L1, thus restoring anti-cancer T cell activities. These PD-1 antibodies lack inter-species cross-reactivity, necessitating surrogate antibodies for preclinical studies, which may limit the predictability and translatability of the studies. RESULTS: To overcome this limitation, we have developed an inter-species cross-reactive PD-1 antibody, GNUV201, by utilizing an enhanced diversity mouse platform (SHINE MOUSE™). GNUV201 equally binds to human PD-1 and mouse PD-1, equally inhibits the binding of human PD-1/PD-L1 and mouse PD-1/PD-L1, and effectively suppresses tumor growth in syngeneic mouse models. The epitope of GNUV201 mapped to the "FG loop" of hPD-1, distinct from those of Keytruda® ("C'D loop") and Opdivo® (N-term). Notably, the structural feature where the protruding epitope loop fits into GNUV201's binding pocket supports the enhanced binding affinity due to slower dissociation (8.7 times slower than Keytruda®). Furthermore, GNUV201 shows a stronger binding affinity at pH 6.0 (5.6 times strong than at pH 7.4), which mimics the hypoxic and acidic tumor microenvironment (TME). This phenomenon is not observed with marketed antibodies (Keytruda®, Opdivo®), implying that GNUV201 achieves more selective binding to and better occupancy on PD-1 in the TME. CONCLUSIONS: In summary, GNUV201 exhibited enhanced affinity for PD-1 with slow dissociation and preferential binding in TME-mimicking low pH. Human/monkey/mouse inter-species cross-reactivity of GNUV201 could enable more predictable and translatable efficacy and toxicity preclinical studies. These results suggest that GNUV201 could be an ideal antibody candidate for anti-cancer drug development.


Assuntos
Reações Cruzadas , Imunoterapia , Receptor de Morte Celular Programada 1 , Animais , Humanos , Receptor de Morte Celular Programada 1/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Camundongos , Reações Cruzadas/imunologia , Imunoterapia/métodos , Concentração de Íons de Hidrogênio , Neoplasias/imunologia , Neoplasias/terapia , Antígeno B7-H1/imunologia , Antígeno B7-H1/metabolismo , Antígeno B7-H1/antagonistas & inibidores , Linhagem Celular Tumoral , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Epitopos/imunologia , Anticorpos Monoclonais Humanizados/imunologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais Humanizados/farmacologia , Camundongos Endogâmicos C57BL , Feminino
6.
J Virol ; 97(3): e0166422, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36779758

RESUMO

Seasonal coronaviruses have been circulating widely in the human population for many years. With increasing age, humans are more likely to have been exposed to these viruses and to have developed immunity against them. It has been hypothesized that this immunity to seasonal coronaviruses may provide partial protection against infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and it has also been shown that coronavirus disease 2019 (COVID-19) vaccination induces a back-boosting effects against the spike proteins of seasonal betacoronaviruses. In this study, we tested if immunity to the seasonal coronavirus spikes from OC43, HKU1, 229E, or NL63 would confer protection against SARS-CoV-2 challenge in a mouse model, and whether pre-existing immunity against these spikes would weaken the protection afforded by mRNA COVID-19 vaccination. We found that mice vaccinated with the seasonal coronavirus spike proteins had no increased protection compared to the negative controls. While a negligible back-boosting effect against betacoronavirus spike proteins was observed after SARS-CoV-2 infection, there was no negative original antigenic sin-like effect on the immune response and protection induced by SARS-CoV-2 mRNA vaccination in animals with pre-existing immunity to seasonal coronavirus spike proteins. IMPORTANCE The impact that immunity against seasonal coronaviruses has on both susceptibility to SARS-CoV-2 infection as well as on COVID-19 vaccination is unclear. This study provides insights into both questions in a mouse model of SARS-CoV-2.


Assuntos
Vacinas contra COVID-19 , Infecções por Coronavirus , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Animais , Humanos , Camundongos , COVID-19/imunologia , Vacinas contra COVID-19/imunologia , SARS-CoV-2/imunologia , Estações do Ano , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinação , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Proteção Cruzada/imunologia
7.
J Med Virol ; 96(5): e29628, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38682568

RESUMO

This study evaluated the potential for antibody-dependent enhancement (ADE) in serum samples from patients exposed to Middle East respiratory syndrome coronavirus (MERS-CoV). Furthermore, we evaluated the effect of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination on ADE in individuals with a MERS infection history. We performed ADE assay in sera from MERS recovered and SARS-CoV-2-vaccinated individuals using BHK cells expressing FcgRIIa, SARS-CoV-2, and MERS-CoV pseudoviruses (PVs). Further, we analyzed the association of ADE to serum IgG levels and neutralization. Out of 16 MERS patients, nine demonstrated ADE against SARS-CoV-2 PV, however, none of the samples demonstrated ADE against MERS-CoV PV. Furthermore, out of the seven patients exposed to SARS-CoV-2 vaccination after MERS-CoV infection, only one patient (acutely infected with MERS-CoV) showed ADE for SARS-CoV-2 PV. Further analysis indicated that IgG1, IgG2, and IgG3 against SARS-CoV-2 S1 and RBD subunits, IgG1 and IgG2 against the MERS-CoV S1 subunit, and serum neutralizing activity were low in ADE-positive samples. In summary, samples from MERS-CoV-infected patients exhibited ADE against SARS-CoV-2 and was significantly associated with low levels of neutralizing antibodies. Subsequent exposure to SARS-CoV-2 vaccination resulted in diminished ADE activity while the PV neutralization assay demonstrated a broadly reactive antibody response in some patient samples.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Anticorpos Facilitadores , COVID-19 , Imunoglobulina G , Coronavírus da Síndrome Respiratória do Oriente Médio , SARS-CoV-2 , Humanos , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Anticorpos Antivirais/sangue , SARS-CoV-2/imunologia , Imunoglobulina G/sangue , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , COVID-19/imunologia , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Pessoa de Meia-Idade , Masculino , Feminino , Testes de Neutralização , Adulto , Vacinas contra COVID-19/imunologia , Antígenos Virais/imunologia , Animais , Idoso , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinação
8.
J Allergy Clin Immunol ; 151(5): 1178-1190, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36932025

RESUMO

Allergenic cross-reactivity among food allergens complicates the diagnosis and management of food allergy. This can result in many patients being sensitized (having allergen-specific IgE) to foods without exhibiting clinical reactivity. Some food groups such as shellfish, fish, tree nuts, and peanuts have very high rates of cross-reactivity. In contrast, relatively low rates are noted for grains and milk, whereas many other food families have variable rates of cross-reactivity or are not well studied. Although classical cross-reactive carbohydrate determinants are clinically not relevant, α-Gal in red meat through tick bites can lead to severe reactions. Multiple sensitizations to tree nuts complicate the diagnosis and management of patients allergic to peanut and tree nut. This review discusses cross-reactive allergens and cross-reactive carbohydrate determinants in the major food groups, and where available, describes their B-cell and T-cell epitopes. The clinical relevance of these cross-reactive B-cell and T-cell epitopes is highlighted and their possible impact on allergen-specific immunotherapy for food allergy is discussed.


Assuntos
Epitopos de Linfócito T , Hipersensibilidade Alimentar , Animais , Hipersensibilidade Alimentar/terapia , Hipersensibilidade Alimentar/diagnóstico , Nozes , Alérgenos , Imunoglobulina E , Reações Cruzadas
9.
J Infect Dis ; 228(Suppl 7): S691-S700, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37288609

RESUMO

Filoviruses, including ebolaviruses and marburgviruses, can cause severe and often fatal disease in humans. Over the past several years, antibody therapy has emerged as a promising strategy for the treatment of filovirus disease. Here, we describe 2 distinct cross-reactive monoclonal antibodies (mAbs) isolated from mice immunized with recombinant vesicular stomatitis virus-based filovirus vaccines. Both mAbs recognized the glycoproteins of multiple different ebolaviruses and exhibited broad but differential in vitro neutralization activities against these viruses. By themselves, each mAb provided partial to full protection against Ebola virus in mice, and in combination, the mAbs provided 100% protection against Sudan virus challenge in guinea pigs. This study identified novel mAbs that were elicited through immunization and able to provide protection from ebolavirus infection, thus enriching the pool of candidate therapeutics for treating Ebola disease.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Humanos , Animais , Cobaias , Camundongos , Anticorpos Monoclonais , Terapia Combinada de Anticorpos , Anticorpos Neutralizantes , Anticorpos Antivirais
10.
Biochem Biophys Res Commun ; 672: 17-26, 2023 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-37331167

RESUMO

Core α-1,3 mannose is structurally near the core xylose and core fucose on core pentasaccharide from plant and insect glycoproteins. Mannosidase is a useful tool for characterization the role of core α-1,3 mannose in the composition of glycan related epitope, especially for those epitopes in which core xylose and core fucose are involved. Through functional genomic analysis, we identified a glycoprotein α-1,3 mannosidase and named it MA3. We used MA3 to treat allergen horseradish peroxidase (HRP) and phospholipase A2 (PLA2) separately. The results showed that after MA3 removed α-1,3 mannose on HRP, the reactivity of HRP with anti-core xylose polyclonal antibody almost disappeared. And the reactivity of MA3-treated PLA2 with anti-core fucose polyclonal antibody decreased partially. In addition, when PLA2 was conducted enzyme digestion by MA3, the reactivity between PLA2 and allergic patients' sera diminished. These results demonstrated that α-1,3 mannose was an critical component of glycan related epitope.


Assuntos
Infecções por Flavobacteriaceae , Hipersensibilidade , Humanos , Manosidases , Fucose , Xilose , Manose , Glicoproteínas , Polissacarídeos , Epitopos
11.
J Virol ; 96(8): e0025022, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35352999

RESUMO

In late 2019, a novel coronavirus began circulating within humans in central China. It was designated SARS-CoV-2 because of its genetic similarities to the 2003 SARS coronavirus (SARS-CoV). Now that SARS-CoV-2 has spread worldwide, there is a risk of it establishing new animal reservoirs and recombination with native circulating coronaviruses. To screen local animal populations in the United States for exposure to SARS-like coronaviruses, we developed a serological assay using the receptor binding domain (RBD) from SARS-CoV-2. SARS-CoV-2's RBD is antigenically distinct from common human and animal coronaviruses, allowing us to identify animals previously infected with SARS-CoV or SARS-CoV-2. Using an indirect enzyme-linked immunosorbent assay (ELISA) for SARS-CoV-2's RBD, we screened serum from wild and domestic animals for the presence of antibodies against SARS-CoV-2's RBD. Surprisingly prepandemic feline serum samples submitted to the University of Tennessee Veterinary Hospital were ∼50% positive for anti-SARS RBD antibodies. Some of these samples were serologically negative for feline coronavirus (FCoV), raising the question of the etiological agent generating anti-SARS-CoV-2 RBD cross-reactivity. We also identified several white-tailed deer from South Carolina with anti-SARS-CoV-2 antibodies. These results are intriguing, as cross-reactive antibodies toward SARS-CoV-2 RBD have not been reported to date. The etiological agent responsible for seropositivity was not readily apparent, but finding seropositive cats prior to the current SARS-CoV-2 pandemic highlights our lack of information about circulating coronaviruses in other species. IMPORTANCE We report cross-reactive antibodies from prepandemic cats and postpandemic South Carolina white-tailed deer that are specific for that SARS-CoV RBD. There are several potential explanations for this cross-reactivity, each with important implications to coronavirus disease surveillance. Perhaps the most intriguing possibility is the existence and transmission of an etiological agent (such as another coronavirus) with similarity to SARS-CoV-2's RBD region. However, we lack conclusive evidence of prepandemic transmission of a SARS-like virus. Our findings provide impetus for the adoption of a One Health Initiative focusing on infectious disease surveillance of multiple animal species to predict the next zoonotic transmission to humans and future pandemics.


Assuntos
Anticorpos Antivirais , Gatos , Cervos , Glicoproteína da Espícula de Coronavírus , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/diagnóstico , COVID-19/veterinária , Gatos/virologia , Reações Cruzadas/imunologia , Cervos/virologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/imunologia , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/metabolismo , Zoonoses Virais/diagnóstico , Zoonoses Virais/virologia
12.
Cytometry A ; 103(6): 528-536, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36602043

RESUMO

Water buffalo (Bubalus bubalis) has a prominent position in the livestock industry worldwide but still suffers from limited knowledge on the mechanisms regulating the immune against infections, including brucellosis (BRC), one of the most significant neglected zoonotic diseases of livestock. Seventy-three buffalo were recruited for the study. Thirty-five were naturally infected with Brucella spp. The aims of the study were to (i) verify the cross-reactivity of 16 monoclonal antibodies (mAbs) developed against human, bovine, and ovine antigens; (ii) evaluate lymphocyte subset alterations in BRC positive buffalo; (iii) evaluate the use of the canonical discriminant analysis (CDA), with flow cytometric data, to discriminate BRC positive from negative animals. A new set of eight mAbs (anti CD3e, CD16, CD18, CD45R0, CD79a; CD172a) were shown to cross-react with water buffalo orthologous molecules. BRC positive animals presented a significant (p < 0.0001) decrease in the percentage of PBMC (29.5 vs. 40.3), total, T and B lymphocytes (23.0 vs. 35.5, 19.2 vs. 28.9, 2.6 vs. 5.7, respectively). In contrast, they showed an increase in percentage of granulocytes (65.2 vs. 55.1; p < 0.0001) and B lymphocytes CD21neg (22.9 vs. 16.1; p = 0.0067), a higher T/B lymphocyte ratio (10.3 vs. 6.4; p = 0.0011) and CD3+ /CD21+ (14.7 vs. 8.3; p = 0.0005) ratio. The CDA, applied to 33 different flow cytometric traits, allowed the discrimination of all BRC positive from negative buffalo. Although this is a preliminary study, our results show that flow cytometry can be used in a wide range of applications in livestock diseases, including in support of uncertain BRC diagnoses.


Assuntos
Brucelose , Búfalos , Animais , Ovinos , Bovinos , Humanos , Imunofenotipagem , Leucócitos Mononucleares , Brucelose/diagnóstico , Subpopulações de Linfócitos
13.
Pediatr Allergy Immunol ; 34 Suppl 28: e13854, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-37186333

RESUMO

Since the discovery of immunoglobulin E (IgE) as a mediator of allergic diseases in 1967, our knowledge about the immunological mechanisms of IgE-mediated allergies has remarkably increased. In addition to understanding the immune response and clinical symptoms, allergy diagnosis and management depend strongly on the precise identification of the elicitors of the IgE-mediated allergic reaction. In the past four decades, innovations in bioscience and technology have facilitated the identification and production of well-defined, highly pure molecules for component-resolved diagnosis (CRD), allowing a personalized diagnosis and management of the allergic disease for individual patients. The first edition of the "EAACI Molecular Allergology User's Guide" (MAUG) in 2016 rapidly became a key reference for clinicians, scientists, and interested readers with a background in allergology, immunology, biology, and medicine. Nevertheless, the field of molecular allergology is moving fast, and after 6 years, a new EAACI Taskforce was established to provide an updated document. The Molecular Allergology User's Guide 2.0 summarizes state-of-the-art information on allergen molecules, their clinical relevance, and their application in diagnostic algorithms for clinical practice. It is designed for both, clinicians and scientists, guiding health care professionals through the overwhelming list of different allergen molecules available for testing. Further, it provides diagnostic algorithms on the clinical relevance of allergenic molecules and gives an overview of their biology, the basic mechanisms of test formats, and the application of tests to measure allergen exposure.


Assuntos
Hipersensibilidade , Humanos , Hipersensibilidade/diagnóstico , Hipersensibilidade/terapia , Alérgenos , Imunoglobulina E
14.
Int J Mol Sci ; 24(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36835455

RESUMO

Ragweed (Ambrosia artemisiifolia) pollen is a major endemic allergen source responsible for severe allergic manifestations in IgE-sensitized allergic patients. It contains the major allergen Amb a 1 and cross-reactive allergen molecules, such as the cytoskeletal protein profilin, Amb a 8 and calcium-binding allergens Amb a 9 and Amb a 10. To assess the importance of Amb a 1, profilin and calcium-binding allergen, the IgE reactivity profiles of clinically well-characterized 150 ragweed pollen-allergic patients were analysed regarding specific IgE levels for Amb a 1 and cross-reactive allergen molecules by quantitative ImmunoCAP measurements, IgE ELISA and by basophil activation experiments. By quantifying allergen-specific IgE levels we found that Amb a 1-specific IgE levels accounted for more than 50% of ragweed pollen-specific IgE in the majority of ragweed pollen-allergic patients. However, approximately 20% of patients were sensitized to profilin and the calcium-binding allergens, Amb a 9 and Amb a 10, respectively. As shown by IgE inhibition experiments, Amb a 8 showed extensive cross-reactivity with profilins from birch (Bet v 2), timothy grass (Phl p 12) and mugwort pollen (Art v 4) and was identified as a highly allergenic molecule by basophil activation testing. Our study indicates that molecular diagnosis performed by the quantification of specific IgE to Amb a 1, Amb a 8, Amb a 9 and Amb a 10 is useful to diagnose genuine sensitization to ragweed pollen and to identify patients who are sensitized to highly cross-reactive allergen molecules present in pollen from unrelated plants, in order to enable precision medicine-based approaches for the treatment and prevention of pollen allergy in areas with complex pollen sensitization.


Assuntos
Alérgenos , Hipersensibilidade , Humanos , Alérgenos/química , Profilinas , Cálcio , Proteínas de Plantas , Antígenos de Plantas , Extratos Vegetais , Reações Cruzadas , Imunoglobulina E/metabolismo , Ambrosia/metabolismo
15.
Int J Mol Sci ; 24(15)2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37569555

RESUMO

Autoimmune cardiopathies (AC) following COVID-19 and vaccination against SARS-CoV-2 occur at significant rates but are of unknown etiology. This study investigated the possible roles of viral and bacterial mimicry, as well as viral-bacterial co-infections, as possible inducers of COVID-19 AC using proteomic methods and enzyme-linked immunoadsorption assays. BLAST and LALIGN results of this study demonstrate that SARS-CoV-2 shares a significantly greater number of high quality similarities to some cardiac protein compared with other viruses; that bacteria such as Streptococci, Staphylococci and Enterococci also display very significant similarities to cardiac proteins but to a different set than SARS-CoV-2; that the importance of these similarities is largely validated by ELISA experiments demonstrating that polyclonal antibodies against SARS-CoV-2 and COVID-19-associated bacteria recognize cardiac proteins with high affinity; that to account for the range of cardiac proteins targeted by autoantibodies in COVID-19-associated autoimmune myocarditis, both viral and bacterial triggers are probably required; that the targets of the viral and bacterial antibodies are often molecularly complementary antigens such as actin and myosin, laminin and collagen, or creatine kinase and pyruvate kinase, that are known to bind to each other; and that the corresponding viral and bacterial antibodies recognizing these complementary antigens also bind to each other with high affinity as if they have an idiotype-anti-idiotype relationship. These results suggest that AC results from SARS-CoV-2 infections or vaccination complicated by bacterial infections. Vaccination against some of these bacterial infections, such as Streptococci and Haemophilus, may therefore decrease AC risk, as may the appropriate and timely use of antibiotics among COVID-19 patients and careful screening of vaccinees for signs of infection such as fever, diarrhea, infected wounds, gum disease, etc.

16.
J Infect Dis ; 226(3): 474-484, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-35091739

RESUMO

BACKGROUND: A protective antibody response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is crucial to decrease morbidity and mortality from severe coronavirus disease 2019 (COVID-19) disease. The effects of preexisting anti-human coronavirus (HCoV) antibodies on the SARS-CoV-2-specific immunoglobulin G (IgG) responses and severity of disease are currently unclear. METHODS: We profiled anti-spike (S), S1, S2, and receptor-binding domain IgG antibodies against SARS-CoV-2 and 6 HCoVs using a multiplex assay (mPLEX-CoV) with serum samples from SARS-CoV-2 infected (n = 155) and pre-COVID-19 (n = 188) cohorts. RESULTS: COVID-19 subjects showed significantly increased anti-S SARS-CoV-2 IgG levels that were highly correlated with IgG antibodies against OC43 and HKU1 S proteins. However, OC43 and HKU1 anti-S antibodies in pre-COVID-19 era sera did not cross-react with SARS-CoV-2. Unidirectional cross-reactive antibodies elicited by SARS-CoV-2 infection were distinct from the bidirectional cross-reactive antibodies recognizing homologous strains RaTG13 and SARS-CoV-1. High anti-OC43 and anti-S2 antibody levels were associated with both a rapid anti-SARS-CoV-2 antibody response and increased disease severity. Subjects with increased sequential organ failure assessment (SOFA) scores developed a higher ratio of S2- to S1-reactive antibodies. CONCLUSIONS: Early and rapid emergence of OC43 S- and S2-reactive IgG after SARS-CoV-2 infection correlates with COVID-19 disease severity.


Assuntos
COVID-19 , Anticorpos Antivirais , Reações Cruzadas , Humanos , Imunoglobulina G , SARS-CoV-2 , Índice de Gravidade de Doença , Glicoproteína da Espícula de Coronavírus
17.
Clin Infect Dis ; 75(Suppl 1): S24-S29, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35441229

RESUMO

Since the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic began 2 years ago, the scientific community has swiftly worked to understand the transmission, pathogenesis, and immune response of this virus to implement public health policies and ultimately project an end to the pandemic. In this perspective, we present our work identifying SARS-CoV-2 epitopes to quantify T-cell responses and review how T cells may help protect against severe disease. We examine our prior studies which demonstrate durable humoral and cell-mediated memory in natural infection and vaccination. We discuss how SARS-CoV-2-specific T cells from either natural infection or vaccination can recognize emerging variants of concern, suggesting that the currently approved vaccines may be sufficient. We also discuss how pre-existing cross-reactive T cells promote rapid development of immune memory to SARS-CoV-2. We finally posit how identifying SARS-CoV-2 epitopes can help us develop a pan-coronavirus vaccine to prepare for future pandemics.


Assuntos
COVID-19 , SARS-CoV-2 , Imunidade Adaptativa , Vacinas contra COVID-19 , Epitopos , Humanos
18.
J Transl Med ; 20(1): 472, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36243758

RESUMO

BACKGROUND: People living with HIV/AIDS (PLWHA) show a reduced incidence for three cancer types, namely breast, prostate and colon cancers. In the present study, we assessed whether a molecular mimicry between HIV epitopes and tumor associated antigens and, consequently, a T cell cross-reactivity could provide an explanation for such an epidemiological evidence. METHODS: Homology between published TAAs and non-self HIV-derived epitopes have been assessed by BLAST homology. Structural analyses have been performed by bioinformatics tools. Immunological validation of CD8+ T cell cross-reactivity has been evaluated ex vivo by tetramer staining. FINDINGS: Sequence homologies between multiple TAAs and HIV epitopes have been found. High structural similarities between the paired TAAs and HIV epitopes as well as comparable patterns of contact with HLA and TCR α and ß chains have been observed. Furthermore, cross-reacting CD8+ T cells have been identified. INTERPRETATION: This is the first study showing a molecular mimicry between HIV antigens an TAAs identified in breast, prostate and colon cancers. Therefore, it is highly reasonable that memory CD8+ T cells elicited during the HIV infection may play a key role in controlling development and progression of such cancers in the PLWHA lifetime. This represents the first demonstration ever that a viral infection may induce a natural "preventive" anti-cancer memory T cells, with highly relevant implications beyond the HIV infection.


Assuntos
Neoplasias do Colo , Infecções por HIV , Linfócitos T CD8-Positivos , Epitopos de Linfócito T , Antígenos HIV , Humanos , Masculino , Mimetismo Molecular , Receptores de Antígenos de Linfócitos T
19.
Vox Sang ; 117(1): 133-135, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34105168

RESUMO

Naturally occurring anti-Kpa antibody is extremely rare and was first reported in 1957, named after the first producer 'Penney'. However, the subsequent anti-Kpa reports presented were all anti-Kpa due to isoimmunization. Individuals with severe bacterial infections particularly Gram-negative bacteria are known to be capable of producing cross-reactive antibodies against Kell blood group system. However, such uncommon antibodies like anti-Kpa can be easily missed in routine pre-transfusion testing unless the panel cells containing low incidence antigen are used for antibody screening. Here, we report a case of naturally occurring anti-Kpa antibody, identified incidentally during pre-transfusion testing of a 12-month-old female infant with the diagnosis of Niemann-Pick disease and recurrent bacterial (Escherichia coli) infection.


Assuntos
Anticorpos , Sistema do Grupo Sanguíneo de Kell , Escherichia coli , Feminino , Humanos , Lactente , Klebsiella pneumoniae
20.
Vet Res ; 53(1): 56, 2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35804412

RESUMO

Foot-and-mouth disease (FMD) remains a very serious barrier to agricultural development and the international trade of animals and animal products. Recently, serotype O has been the most prevalent FMDV serotype in China, and it has evolved into four different lineages: O/SEA/Mya-98, O/ME-SA/PanAsia, O/ME-SA/Ind-2001 and O/Cathay. PanAsia-2, belonging to the O/ME-SA topotype, is prevalent in neighbouring countries and poses the risk of cross-border spread in China. This study aimed to develop a promising vaccine candidate strain that can not only provide the best protection against all serotype O FMDVs circulating in China but also be used as an emergency vaccine for the prevention and control of transboundary incursion of PanAsia-2. Here, two chimeric FMDVs (rHN/TURVP1 and rHN/NXVP1) featuring substitution of VP1 genes of the O/TUR/5/2009 vaccine strain (PanAsia-2) and O/NXYCh/CHA/2018 epidemic strain (Mya98) were constructed and evaluated. The biological properties of the two chimeric FMDVs were similar to those of the wild-type (wt) virus despite slight differences in plaque sizes observed in BHK-21 cells. The structural protein-specific antibody titres induced by the rHN/TURVP1 and wt virus vaccines in pigs and cows were higher than those induced by the rHN/NXVP1 vaccine at 28-56 dpv. The vaccines prepared from the two chimeric viruses and wt virus all induced the production of protective cross-neutralizing antibodies against the viruses of the Mya-98, PanAsia and Ind-2001 lineages in pigs and cattle at 28 dpv; however, only the animals vaccinated with the rHN/TURVP1 vaccine produced a protective immune response to the field isolate of the Cathay lineage at 28 dpv, whereas the animals receiving the wt virus and the rHN/NXVP1 vaccines did not, although the wt virus and O/GXCX/CHA/2018 both belong to the Cathay topotype. This study will provide very useful information to help develop a potential vaccine candidate for the prevention and control of serotype O FMD in China.


Assuntos
Doenças dos Bovinos , Vírus da Febre Aftosa , Febre Aftosa , Vacinas Virais , Animais , Bovinos , Doenças dos Bovinos/prevenção & controle , Comércio , Febre Aftosa/epidemiologia , Vírus da Febre Aftosa/genética , Internacionalidade , Sorogrupo , Suínos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa