Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(8)2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38676123

RESUMO

This paper describes the use of wireless smart sensors for examining the underlying mechanism for the wind-induced vibration of high-mast illumination pole (HMIP) structures. HMIPs are tall, slender structures with low inherent damping. Video recordings of multiple HMIPs showed considerable vibrations of these HMIPs under wind loading in the state of Kansas. The HMIPs experienced cyclic large-amplitude displacements at the top, which can produce high-stress demand and lead to fatigue cracking at the bottom of the pole. In this study, the natural frequencies of the HMIP were assessed using pluck tests and finite element modeling, and the recorded vibration frequencies were obtained through computer vision-based video analysis. Meanwhile, a 30.48 m tall HMIP with three LED luminaires made of galvanized steel located in Wakeeney, Kansas, was selected for long-term vibration monitoring using wireless smart sensors to investigate the underlying mechanism for the excessive wind-induced vibrations. Data analysis with the long-term monitoring data indicates that while vortex-induced vibration occurs frequently at relatively low amplitude, buffeting-induced vibration was the leading cause of the excessive vibrations of the monitored HMIP. The findings provide crucial information to guide the design of vibration mitigation strategies for these HMIP structures.

2.
Sensors (Basel) ; 23(20)2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37896630

RESUMO

During the on-track acoustic detection process, a potential flow model and an acoustic finite element mathematical model based on synthetic wind are utilized, taking into account the combined effects of vehicle speed, wind direction angle, and crosswind speed. Simulation and modeling are achieved using Automatic Matching of Acoustic Radiation Boundary Conditions (AML) technology, enabling obtaining a distribution map and sound pressure frequency response curve of the trackside acoustic field under crosswind conditions by setting up field point grids. It is found that sound pressure values at the same location gradually increase as the vehicle speed increases in the frequency range of 10 Hz to 70 Hz, at different vehicle speeds. The sound pressure values and distribution area of the trackside acoustic field are the largest when the crosswind speed is 10 m/s (wind force at level five), allowing for easier location of the sound source when a fault occurs. The study also reveals that under different wind direction angles, the same location's sound pressure value on the trackside gradually decreases as the wind direction angle increases, to lower than that of the non-crosswind condition, severely hindering the reception and diagnosis of acoustic signals.

3.
J Anim Ecol ; 89(6): 1317-1328, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32144757

RESUMO

Large bodies of water represent major obstacles for the migration of soaring birds because thermal updrafts are absent or weak over water. Soaring birds are known to time their water crossings with favourable weather conditions and there are records of birds falling into the water and drowning in large numbers. However, it is still unclear how environmental factors, individual traits and trajectory choices affect their water crossing performance, this being important to understand the fitness consequences of water barriers for this group of birds. We addressed this problem using the black kite Milvus migrans as model species at a major migration bottleneck, the Strait of Gibraltar. We recorded high-resolution GPS and triaxial accelerometer data for 73 birds while crossing the Strait of Gibraltar, allowing the determination of sea crossing duration, length, altitude, speed and tortuosity, the flapping behaviour of birds and their failed crossing attempts. These parameters were modelled against wind speed and direction, time of the day, solar irradiance (proxy of thermal uplift), starting altitude and distance to Morocco, and age and sex of birds. We found that sea crossing performance of black kites is driven by their age, the wind conditions, the starting altitude and distance to Morocco. Young birds made longer sea crossings and reached lower altitude above the sea than adults. Crosswinds promoted longer sea crossings, with birds reaching lower altitudes and with higher flapping effort. Birds starting at lower altitudes were more likely to quit or made higher flapping effort to complete the crossing. The location where birds started the sea crossings impacted crossing distance and duration. We present evidence that explains why migrating soaring birds accumulate at sea passages during adverse weather conditions. Strong crosswinds during sea crossings force birds to extended flap-powered flight at low altitude, which may increase their chances of falling in the water. We also showed that juvenile birds assume more risks than adults. Finally, the way in which birds start the sea crossing is crucial for their success, particularly the starting altitude, which dictates how far birds can reach with reduced flapping effort.


Assuntos
Migração Animal , Voo Animal , África , Animais , Aves , Gibraltar , Vento
4.
Proc Biol Sci ; 281(1782): 20140018, 2014 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-24648227

RESUMO

When animals move, their tracks may be strongly influenced by the motion of air or water, and this may affect the speed, energetics and prospects of the journey. Flying organisms, such as bats, may thus benefit from modifying their flight in response to the wind vector. Yet, practical difficulties have so far limited the understanding of this response for free-ranging bats. We tracked nine straw-coloured fruit bats (Eidolon helvum) that flew 42.5 ± 17.5 km (mean ± s.d.) to and from their roost near Accra, Ghana. Following detailed atmospheric simulations, we found that bats compensated for wind drift, as predicted under constant winds, and decreased their airspeed in response to tailwind assistance such that their groundspeed remained nearly constant. In addition, bats increased their airspeed with increasing crosswind speed. Overall, bats modulated their airspeed in relation to wind speed at different wind directions in a manner predicted by a two-dimensional optimal movement model. We conclude that sophisticated behavioural mechanisms to minimize the cost of transport under various wind conditions have evolved in bats. The bats' response to the wind is similar to that reported for migratory birds and insects, suggesting convergent evolution of flight behaviours in volant organisms.


Assuntos
Quirópteros , Voo Animal , Vento , Animais , Modelos Biológicos
5.
Accid Anal Prev ; 200: 107540, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38479204

RESUMO

As the detrimental impact of the commonly recommended centered driving mode for autonomous trucks on road longevity is gaining attention, more lateral control modes are being proposed to enhance road sustainability. However, there is currently a lack of research on the lateral safety analysis of autonomous trucks with different lateral control modes, especially in complex driving scenarios (such as overtaking) and adverse weather conditions. Therefore, this study developed a safety assessment framework to comparatively analyze the risk probability differences in lateral accidents during overtaking maneuvers by autonomous trucks with different lateral control modes under adverse weather conditions. Based on aerodynamics and vehicle dynamics simulations to capture the multifactorial influences on truck lateral deviation, the results are used for model validation and training. In the reliability approach, Support Vector Machine Regression (SVR) is introduced to establish the SVR response surface model with optimal predictive performance, and combined with Monte Carlo simulations for safety assessment, quantifying safety indices. The results indicate that trucks being overtaken during overtaking maneuvers are more prone to lateral accidents under crosswind influences. The overall impact of lateral control modes on the lateral safety trends is minor. Compared to other lateral control modes, following the centered zero-drift mode is generally safer. However, in conditions of low wind speeds (below 20 km/h) or on highly slippery road surfaces (road friction coefficient below 0.1), autonomous trucks following a uniform distribution mode can better maintain a low-risk level. This study provides crucial insights for future considerations integrating road longevity and truck safety in a collaborative manner, and the proposed methodology has broad applications.


Assuntos
Acidentes de Trânsito , Condução de Veículo , Humanos , Acidentes de Trânsito/prevenção & controle , Reprodutibilidade dos Testes , Veículos Automotores , Tempo (Meteorologia)
6.
J Sports Sci Med ; 12(2): 309-15, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24149810

RESUMO

This study was made to analyze the variability and stability of the serve toss in tennis, on the x (side-to-side), y (back-to-front) and z (vertical) axes, with 12 experienced players under the influence of crosswind (induced aerodynamic flow) produced by an industrial ventilator. The players were analyzed individually after serving at maximum speed and accuracy to the intersection point of the centre line and service line ("T "point). The results allow us to conclude that the experienced players tend to stabilize the vertical dimension of the service (z axis). Additionally, this study confirms the invariability of the player height ratio: height of impact (1:1.5) in experienced players even when constrained by the "artificial crosswind. "Given the above, the vertical dimension of the tennis serve is assumed as a constant feature, which is guaranteed in the remaining varying dimensions (y and x axes) of the ball toss. Thus, the variability should be seen as part of the solution and not as something to be avoided by players and coaches. Key PointsAnalysis of the tennis serve variability under the effect of artificial crosswindTwelve experienced tennis players performed a set of 20 free serves (without wind constraints), and four other sets of 20 serves under different practice conditions (with different crosswind intensities)The players tend to stabilize in the z axis and vary in the y- (back-to-front) and x-axes (side-to-side) during the ball toss tennis serve in all the practice conditions (with and without crosswind)THE MAINTENANCE OF A PLAYER HEIGHT RATIO: impact height of approximately 1:1.5 in experienced players, even when constrained by "artificial crosswind".

7.
J Sci Med Sport ; 26(1): 46-51, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36528552

RESUMO

OBJECTIVES: The main goal of this study was to compare the aerodynamic optimization level in echelon-formation strategy for riders fighting against a crosswind from the best (echelon or diagonal paceline) to the worst riders' configuration (guttered riders). DESIGN: The case reported herein concerned a group of 5 cyclists riding at 30 km/h with a 30 km/h crosswind oriented at 40° to the direction of travel. The effects of the wind, expressed in terms of aerodynamic resistance or pressure, were determined for each cyclist in the different configurations. METHODS: The 3D numerical simulations were performed using a calculation code based on the finite volume method and the Reynolds-averaged Navier-Stokes turbulence model k-kl-ω. RESULTS: The results showed that the lateral force savings, averaged over the whole five-riders group, ranged from 50% in the echelon-optimized configuration to 11% in the guttered straight-line one, compared to a solo rider in the same velocity and windy conditions. Individually, the rider with the best aerodynamic shelter is the 4th rider in the "4 rider echelon + 1 guttered rider" formation (- 53.6% in drag force and - 69.8% in lateral force), while the rider with the worst aerodynamic situation is the leader of the straight paceline (- 0.1% in drag force and - 0.2% in lateral force). CONCLUSIONS: The analysis showed how the spatial management of riders significantly influences drag and lateral forces and supported the idea that avoiding being guttered is the best way to save energy in windy races.


Assuntos
Ciclismo , Vento , Humanos , Motivação
8.
Accid Anal Prev ; 174: 106775, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35868144

RESUMO

The truck platoon is one of the most promising connected and autonomous vehicle (CAV) technologies that can reduce fuel consumption and emission, enhance traffic safety, and increase roadway capacity. It is predicted to become mainstream in the next decade. Therefore, it is imperative to fully investigate the safety issues of the truck platoon before its large-scale deployment. However, studies on the lateral safety of the truck platoon under extreme weather, especially crosswinds are still lacking. To fill such a research gap, the current study contributes to the literature by proposing a reliability-based framework to evaluate the safety of the truck platoon regarding incursion into neighboring lanes due to extreme weather, especially crosswinds. The proposed approach involved three main steps: (1) the computational fluid dynamics (CFD) simulation of the aerodynamics of the truck platoon; (2) the truck platoon driving simulation under crosswind; and (3) the advanced response surface model development and the reliability analysis. Four main factors regarding lateral safety of the platoon were considered: wind speed, road friction coefficients, driving speed, and inter-vehicle spacing. The maximum lateral displacement (MLD) was chosen as a measure of lateral safety. The results showed that there was a significant difference between the aerodynamics of a single truck and that of the truck platoon vehicles and the inter-vehicle spacing between trucks within the truck platoon barely influenced the MLD. The MLD was largest for the leading truck as compared to those of the following trucks. The inter-vehicle spacing didn't have a significant influence on MLD when the inter-vehicle spacing is shorter than 1.5 times of the truck length, while the other factors impacted the MLD significantly. In addition, the support vector regression with the radial basis function outperformed the other response surface functions. Based on reliability analysis, the risk level of the truck platoon was quantified using the safety index, and the impact of contributing factors towards the safety index of the truck platoon was also evaluated. This study confirmed that the proposed framework could be applied to evaluate the lateral safety of the truck platoon. The findings provide important practical implications for the decision-making of transportation management agencies and tailored countermeasures in the CAV) environment.


Assuntos
Condução de Veículo , Clima Extremo , Acidentes de Trânsito/prevenção & controle , Humanos , Veículos Automotores , Reprodutibilidade dos Testes , Segurança , Tempo (Meteorologia)
9.
Artigo em Inglês | MEDLINE | ID: mdl-35742305

RESUMO

This study investigated smoke dispersion inside a street canyon in a series of numerical simulations. The building height and street width as well as the cross-wind velocity were changed during the simulation, and the smoke recirculation behavior inside the canyon is presented and discussed. The results show that the smoke recirculation behavior could be distinguished into two different stages, i.e., the "fully recirculation stage" and "semi recirculation stage", which is strongly determined by the canyon aspect ratio (the building height divided by street width). It was found that the critical wind velocity at which the smoke recirculation would take place was almost constant for an ideal street canyon with an aspect ratio of 1; however, this velocity was decreased with increasing building height or decreasing street width, indicating a much more dangerous circumstance when the aspect ratio is greater. Finally, a new piecewise function is proposed for the critical smoke recirculation velocity for all cases, which can provide some theoretical basis for building designs and emergency rescue for human beings inside the street canyon.


Assuntos
Poluentes Atmosféricos , Vento , Poluentes Atmosféricos/análise , Cidades , Simulação por Computador , Monitoramento Ambiental/métodos , Humanos , Modelos Teóricos , Fumaça , Emissões de Veículos/análise
10.
J Forensic Sci ; 65(1): 255-258, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31411743

RESUMO

The horizontal displacement of the human body resulting from fatal fall from a height is an important variable commonly used to inversely determine the cause or identify other forensic aspects of the fall. When examining the horizontal displacement, the wind effect is generally ignored. This technical note reports analytical modeling of the falling process, utilizing previous measurements of wind force acting on the human body, for determining the functional relationship between the wind speed and the horizontal displacement in the falling process. The result reveals that it does not take extremely rare wind conditions to cause a considerable shift of the human body, highlighting the importance to consider wind as a factor in investigations of fatal falls.


Assuntos
Acidentes por Quedas , Ciências Forenses/métodos , Modelos Biológicos , Modelos Estatísticos , Vento , Fenômenos Biofísicos , Estatura , Índice de Massa Corporal , Feminino , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa