Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 28(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36615227

RESUMO

The objectives of this study were to produce sodium alginate (SA)-based cryogel beads filled with different concentrations (0, 0.4, 1.0, and 2.5%, w/w) of hydroxypropyl distarch phosphate (HDP) as a curcumin delivery system and to investigate the physicochemical, structural, and in vitro gastrointestinal tract release properties of the cryogel beads. According to FT-IR analysis, the formation of ionic crosslinking between SA and Ca2+ and the presence of HDP were found. XRD analysis demonstrated the successful encapsulation of curcumin in the beads by observing the disappearance of the characteristic peaks of curcumin. SEM analysis results revelated that SA-based cryogel beads exhibited a denser internal structure as the HDP concentration was increased. The encapsulation efficiency of curcumin in SA cryogel beads filled with HDP concentration from 0% to 2.5% was increased from 31.95% to 76.66%, respectively, indicating that HDP can be a suitable filler for the encapsulation of curcumin in the production of SA-based cryogel beads. After exposure to simulated gastric fluid (SGF) and simulated intestinal fluid (SIF), the release rate of curcumin was decreased as HDP concentration was increased. Accordingly, SA-based cryogel beads filled with HDP can be utilized for the delivery system of curcumin in the food industry.


Assuntos
Criogéis , Curcumina , Curcumina/química , Alginatos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Trato Gastrointestinal
2.
Int J Mol Sci ; 21(22)2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33238365

RESUMO

Identification of molecules able to promote neuroprotective mechanisms can represent a promising therapeutic approach to neurodegenerative disorders including Huntington's disease. Curcumin is an antioxidant and neuroprotective agent, even though its efficacy is limited by its poor absorption, rapid metabolism, systemic elimination, and limited blood-brain barrier (BBB) permeability. Herein, we report on novel biodegradable curcumin-containing nanoparticles to favor the compound delivery and potentially enhance its brain bioavailability. The prepared hyaluronan-based materials able to self-assemble in stable spherical nanoparticles, consist of natural fatty acids chemically conjugated to the natural polysaccharide. The aim of this study is to provide a possible effective delivery system for curcumin with the expectation that, after having released the drug at the specific site, the biopolymer can degrade to nontoxic fragments before renal excretion, since all the starting materials are provided by natural resource. Our findings demonstrate that curcumin-encapsulated nanoparticles enter the cells and reduce their susceptibility to apoptosis in an in vitro model of Huntington's disease.


Assuntos
Curcumina/farmacologia , Sistemas de Liberação de Medicamentos , Proteína Huntingtina/genética , Doença de Huntington/tratamento farmacológico , Nanopartículas/química , Animais , Antioxidantes/química , Antioxidantes/farmacologia , Barreira Hematoencefálica/efeitos dos fármacos , Linhagem Celular , Curcumina/química , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Doença de Huntington/genética , Doença de Huntington/patologia , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Camundongos , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Tensoativos/química , Tensoativos/farmacologia
3.
Int J Biol Macromol ; 267(Pt 1): 131217, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38552683

RESUMO

Ultrasonic assisted acetic acid hydrolysis was applied to prepare starch nanocrystals (SNCs) from native starches with different crystalline structures (A, B, and C types). The structure properties, morphology, Pickering emulsion stability and curcumin deliver capacity of both SNCs and native starches were investigated and compared. Compared with native starches, SNCs showed smaller size and higher crystallinity. The size of SNCs varied with different crystalline types, with C-type starch exhibiting the smallest SNCs (107.4 nm), followed by A-type (113.8 nm), and B-type displaying the largest particle size (149.0 nm). SNCs-Pickering emulsion showed enhanced stability with smaller emulsion droplets, higher static stability, and denser oil/water interface. SNCs-Pickering emulsions displayed higher curcumin loading efficiency (53.53 %-61.41 %) compared with native starch-Pickering emulsions (13.93 %-19.73 %). During in vitro digestion, SNCs-Pickering emulsions proved to be more proficient in protecting and prolonging the biological activity of curcumin due to their smaller size and better interfacial properties. These findings demonstrated the potential of SNCs for application in Pickering emulsion and delivery of bioactive components.


Assuntos
Ácido Acético , Curcumina , Emulsões , Nanopartículas , Amido , Curcumina/química , Amido/química , Emulsões/química , Nanopartículas/química , Ácido Acético/química , Tamanho da Partícula , Estabilidade de Medicamentos , Hidrólise , Cristalização , Ondas Ultrassônicas , Portadores de Fármacos/química
4.
Food Chem ; 460(Pt 3): 140748, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39142209

RESUMO

In this study, a novel dextrin-based micelle (OSAD-SH), dual-modified with octenyl succinic anhydride (OSA) and cysteamine, was developed to address the acid instability issues of micelle modified only by OSA and designed for curcumin delivery. Three amphiphilic OSAD-SH polymers with different free sulfhydryl content were first synthesized. The study demonstrated that OSAD-SH micelles exhibited strong self-assembly properties, appearing as spheres with diameters ranging from 92.41 to 194.20 nm. Blank micelles showed good dilution resistance, as well as stability against acid, thermal, and ionic strength. The curcumin encapsulated by the micelles was in an amorphous state. In vitro release experiment demonstrated that curcumin released from OSAD-SH micelles exhibited pH responsiveness. The Ritger-Peppas model effectively predicted the release behavior of curcumin, which followed a super case-II transport. The OSAD-SH micelle will be a promising nanocarrier for improving the physicochemical properties of curcumin in food fields.

5.
Food Chem ; 454: 139832, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38820641

RESUMO

Mesoporous silica microspheres (MSMs) possess poor biocompatibility. This study focuses on integrating MSMs with polymers to obtain hybrid materials with superior performance compared to the individual components and responsive release in specific environments. The synthesized MSMs were aminated, and subsequently, soybean hull polysaccharide (SHPs) was modified onto MSMs-NH2 to produce MSMs-NH2@SHPs nanoparticles. The encapsulation rate, loading rate of curcumin (Cur), and in vitro release behavior were investigated. Results indicated that the encapsulation efficiency of Cur by MSMs-NH2@SHPs nanoparticles reached 75.58%, 6.95 times that of MSMs-NH2 with a load capacity of 35.12%. It is noteworthy that these nanoparticles exhibit pH-responsive release capacity in vitro. The cumulative release rate of the three nanoparticles at pH 5.0 was higher than that at pH 7.4. MSMs-NH2@SHPs had a cumulative release rate of 56.55% at pH 7.4, increasing to 76.21% at pH 5.0. In vitro experiments have shown that MSMs-based nanoparticles have high delivery efficiency and can achieve pH-sensitive drug release, with a high release rate in a slightly acidic acid, highlighting the potential for controlled release of Cur.


Assuntos
Curcumina , Preparações de Ação Retardada , Glycine max , Microesferas , Polissacarídeos , Dióxido de Silício , Curcumina/química , Concentração de Íons de Hidrogênio , Dióxido de Silício/química , Polissacarídeos/química , Glycine max/química , Preparações de Ação Retardada/química , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Porosidade , Composição de Medicamentos , Nanopartículas/química
6.
Int J Biol Macromol ; 275(Pt 1): 133558, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38955296

RESUMO

Skin could protect our body and regenerate itself to against dysfunctional and disfiguring scars when faced with external injury. As wound dressings, hydrogels are biocompatible, hydrophilic and have a 3D structure similar to the extracellular matrix (ECM). In particular, hydrogels with drug-releasing capabilities are in acute wound healing. In this paper, photocrosslinked hydrogels served as wound dressing based on sodium carboxymethylcellulose (CMC) were prepared to promote wound healing. Photocrosslinked hydrogels were prepared by grafting lysine and allyl glycidyl ether (AGE) onto CMC and encapsulating curcumin (Cur). The synthesized hydrogels had the unique 3D porous structure with a swelling ratio up to 1300 % in aqueous solution. The drug release ratios of the hydrogels were 20.8 % in acid environment, and 14.4 % in alkaline environment. Notably, the hydrogels showed good biocompatibility and antibacterial properties and also exhibited the ability to accelerate the process of skin wound healing while prevent inflammation and scar formation when applied to a mouse skin wound model. As a result, the prepared hydrogels Gel-CLA@Cur showed great potential in wound healing.


Assuntos
Carboximetilcelulose Sódica , Curcumina , Hidrogéis , Cicatrização , Curcumina/farmacologia , Curcumina/química , Hidrogéis/química , Hidrogéis/farmacologia , Hidrogéis/síntese química , Cicatrização/efeitos dos fármacos , Carboximetilcelulose Sódica/química , Animais , Camundongos , Liberação Controlada de Fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Portadores de Fármacos/química , Reagentes de Ligações Cruzadas/química , Pele/efeitos dos fármacos , Sistemas de Liberação de Medicamentos
7.
Foods ; 13(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731695

RESUMO

This project aimed to explore the influence of the interaction between ovotransferrin fibrils (OTF) and gum arabic (GA) on the formation mechanism, physicochemical properties, and curcumin delivery of the oleogel-in-water Pickering emulsion. Cryo-scanning electron microscopy results showed that OTF-GA complexes effectively adsorbed on the oil-water interface, generating spatial hindrance to inhibit droplet coalescence. The texture analysis also proved that OTF-GA complexes endowed oleogel-in-water Pickering emulsion with preferable springiness (0.49 ± 0.03 mm), chewiness (0.43 ± 0.07 mJ), and adhesion (0.31 ± 0.01 mJ). By exploring the coalescence stability, droplet size, and rheological properties of OTF-GA complexes-stabilized oleogel-in-water Pickering emulsion (OGPE), the higher coagulation stability, larger average droplet size (46.22 ± 0.08 µm), and stronger gel strength were observed. The microrheological results also exhibited stronger attraction between the OGPE droplets, a more pronounced solid-like structure, and a slower speed of movement than OTF-stabilized oleogel-in-water Pickering emulsion (OPE). Meanwhile, OGPE significantly enhanced the extent of lipolysis, stability, and bioaccessibility of curcumin, suggesting that it possessed superior performance as a delivery system for bioactive substances. This project provided adequate theoretical references for protein-polysaccharide complexes-stabilized oleogel-in-water Pickering emulsion, and contributed to expanding the application of oleogel-in-water Pickering emulsion in the food industry.

8.
Pharmaceutics ; 15(5)2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37242662

RESUMO

The skin is a complex and selective system from the perspective of permeability to substances from the external environment. Microemulsion systems have demonstrated a high performance in encapsulating, protecting and transporting active substances through the skin. Due to the low viscosity of microemulsion systems and the importance of a texture that is easy to apply in the cosmetic and pharmaceutical fields, gel microemulsions are increasingly gaining more interest. The aim of this study was to develop new microemulsion systems for topical use; to identify a suitable water-soluble polymer in order to obtain gel microemulsions; and to study the efficacy of the developed microemulsion and gel microemulsion systems in the delivery of a model active ingredient, namely curcumin, into the skin. A pseudo-ternary phase diagram was developed using AKYPO® SOFT 100 BVC, PLANTACARE® 2000 UP Solution and ethanol as a surfactant mix; caprylic/capric triglycerides, obtained from coconut oil, as the oily phase; and distilled water. To obtain gel microemulsions, sodium hyaluronate salt was used. All these ingredients are safe for the skin and are biodegradable. The selected microemulsions and gel microemulsions were physicochemically characterized by means of dynamic light scattering, electrical conductivity, polarized microscopy and rheometric measurements. To evaluate the efficiency of the selected microemulsion and gel microemulsion to deliver the encapsulated curcumin, an in vitro permeation study was performed.

9.
Carbohydr Polym ; 322: 121341, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37839845

RESUMO

Emulgels are a type of soft solid delivery system that exploit the merits of both emulsions and gels, namely, bioactive encapsulability and structural stability, respectively. We utilized retrograded/octenylsuccinylated maize starch (ROMS) to fabricate the curcumin-loaded emulgel. Emulgels (oil volume fraction, 0.20) prepared with 1-4 % w/w ROMS exhibited fluid-like behaviors while emulgels with 5-8 % w/w ROMS exhibited a gel-like consistency. Compared to a fluidic emulsion stabilized with 3 % w/w octenylsuccinylated maize starch, the emulgels showed more sustained lipolysis and controlled curcumin release patterns. These results were attributed to rigid ROMS structures at the outer layer of oil droplets, hindering the lipase approach onto the oil/water interface and curcumin diffusion from the interface. Additionally, the bioaccessibility of curcumin in ROMS-stabilized emulgels was enhanced >9.6-fold compared to that of a curcumin solution. Furthermore, emulgels prepared with 8 % w/w ROMS exhibited a high yield stress (376.4 Pa) and maintained appearance and droplet size for 60 days of storage at 4 °C. Consequently, this emulgel has potential as a lipophilic bioactive-containing soft gel with sustained digestion and controlled release properties. Our findings may provide insights into rational delivery system designs.


Assuntos
Curcumina , Curcumina/farmacologia , Curcumina/química , Zea mays , Amido/química , Emulsões/química
10.
Carbohydr Polym ; 295: 119875, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35989015

RESUMO

The aim of this study was to enhance the stability, bioaccesibility, and bioactivities of curcumin using a composite nanoparticle prepared from zein and Mesona chinensis polysaccharide (MCP). Curcumin-loaded nanoparticles (ZMC NPs) were prepared. ZMC NPs showed smooth spherical structure with a high encapsulation efficiency (94 %), a small average particle size (223 nm), and surface negative charge (-34.53 mV). Compared with free curcumin, encapsulated curcumin has been shown to have better environmental stability, higher antioxidant activity and bioaccesibility. The surface coating of zein NPs with MCP makes them more amenable to uptake by intestinal epithelial cells. Studies on in vitro antitumor activity of ZMC NPs showed that they could enter hepatocellular carcinoma cells, induce cell apoptosis, promote ROS production, and alter mitochondrial membrane potential, showing higher in vitro antitumor activity compared to free curcumin. These results may contribute to the development of novel curcumin oral delivery systems.


Assuntos
Curcumina , Lamiaceae , Nanopartículas , Zeína , Curcumina/química , Curcumina/farmacologia , Nanopartículas/química , Tamanho da Partícula , Polissacarídeos/farmacologia , Zeína/química
11.
Polymers (Basel) ; 14(19)2022 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-36236077

RESUMO

Stimuli-response polymeric nanoparticles have emerged as a carrier system for various types of therapeutic delivery. In this study, we prepared a dual pH- and thermo-sensitive copolymer hydrogel (HG) system (PNIPAm-co-PAAm HG), using N-isopropyl acrylamide (NIPAm) and acrylamide (AAm) as comonomers. The synthesized PNIPAm-co-PAAm HG was characterized using various instrumental characterizations. Moreover, the PNIPAm-co-PAAm HG's thermoresponsive phase transition behavior was investigated, and the results showed that the prepared HG responds to temperature changes. In vitro drug loading and release behavior of PNIPAm-co-PAAm HG was investigated using Curcumin (Cur) as the model cargo under different pH and temperature conditions. The PNIPAm-co-PAAm HG showed pH and temperature-responsive drug release behavior and demonstrated about 65% Cur loading efficiency. A nearly complete release of the loaded Cur occurred from the PNIPAm-co-PAAm HG over 4 h at pH 5.5 and 40 °C. The cytotoxicity study was performed on a liver cancer cell line (HepG2 cells), which revealed that the prepared PNIPAm-co-PAAm HG showed good biocompatibility, suggesting that it could be applied as a drug delivery carrier. Moreover, the in vitro cytocompatibility test (MTT assay) results revealed that the PNIPAm-co-PAAm HG is biocompatible. Therefore, the PNIPAm-co-PAAm HG has the potential to be useful in the delivery of drugs in solid tumor-targeted therapy.

12.
Int J Biol Macromol ; 202: 241-255, 2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35041881

RESUMO

A cancer nanotheranostic system was fabricated based on mesoporous silica@chitosan@gold (MCM@CS@Au) nanosystem targeted by aptamer toward the MUC-1 positive tumor cells. Subsequently, curcumin as an efficient herbal anticancer drug was first encapsulated into chitosan-triphosphate nanoparticles and then the resulted nanoparticle was loaded into the nanosystem (MCM@CS@Au-Apt). The nanosystem successful fabrication was approved at each synthesis step through FTIR, XRD, BET, DLS, FE-SEM, HRTEM, and fluorescence spectroscopy. Besides, the interaction between aptamer and curcumin was evaluated using full atomistic molecular dynamics simulations. The mechanism of curcumin release was likewise investigated through different kinetic models. Afterwards, the potential of the designed nanosystem in targeted imaging, and drug delivery was evaluated using fluorescence microscopy and flow cytometry. It was found that the energy transfer between the base pairs in the hairpin of double strands of DNA aptamer acts as a quencher for MCM@CS@Au fluorescence culminating in an "on/off" optical biosensor. On the other hand, the presence of pH-sensitive chitosan nanoparticles creates smart nanosystem to deliver more curcumin into the desired cells. Indeed, when the aptamer specifically binds to the MUC-1 receptor, its double strands separate under the low pH condition, leading to the drug release and the recovery of the fluorescence ("On" state). Based on the toxicity results, this nanosystem had more toxicity toward the MUC-1-positive tumor cells than MUC-1-negative cells, representing its selective targeting. Therefore, this nanosystem could be introduced as a smart anticancer nanotheranostic system for tracing particular biomarkers (MUC-1), non-invasive fluorescence imaging, and targeted curcumin delivery.


Assuntos
Técnicas Biossensoriais , Quitosana , Nanopartículas Metálicas , Nanopartículas , Neoplasias , Quitosana/química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Ouro/química , Humanos , Concentração de Íons de Hidrogênio , Nanopartículas Metálicas/química , Nanopartículas/química , Neoplasias/tratamento farmacológico , Medicina de Precisão , Dióxido de Silício/química
13.
Biomater Adv ; 139: 213017, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35882115

RESUMO

We herein fabricated a cancer nanotheranostics platform based on Graphene Oxide Quantum Dot-Chitosan-polyethylene glycol nanoconjugate (GOQD-CS-PEG), which were targeted with MUC-1 aptamer towards breast and colon tumors. The interaction between aptamer and MUC-1 receptor on the desired cells was investigated utilizing molecular docking. The process of curcumin release was investigated, as well as the potential of the produced nanocomposite in targeted drug delivery, specific detection, and photoluminescence imaging. The fluorescence intensity of GOQD-CS-PEG was reduced due to transferred energy between (cytosine-guanin) base pairs in the hairpin structure of the aptamer, resulting in an "on/off" photoluminescence bio-sensing. Interestingly, the integration of pH-responsive chitosan nanoparticles in the nanocomposite results in a smart nanocomposite capable of delivering more curcumin to desired tumor cells. When selectively binds to the MUC-1 receptor, the two strands of aptamer separate in acidic conditions, resulting in a sustained drug release and photoluminescence recovery. The cytotoxicity results also revealed that the nanocomposite was more toxic to MUC-1-overexpressed tumor cells than to negative control cell lines, confirming its selective targeting. As a result, the proposed nanocomposite could be used as an intelligent cancer nanotheranostic platform for tracing MUC-1-overexpressed tumor cells and targeting them with great efficiency and selectivity.


Assuntos
Quitosana , Curcumina , Neoplasias , Pontos Quânticos , Quitosana/química , Curcumina/farmacologia , Grafite , Humanos , Concentração de Íons de Hidrogênio , Simulação de Acoplamento Molecular , Pontos Quânticos/química , Nanomedicina Teranóstica
14.
Biomedicines ; 9(10)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34680593

RESUMO

Curcumin, a main bioactive component of the Curcuma longa L. rhizome, is a phenolic compound that exerts a wide range of beneficial effects, acting as an antimicrobial, antioxidant, anti-inflammatory and anticancer agent. This review summarizes recent data on curcumin's ability to interfere with the multiple cell signaling pathways involved in cell cycle regulation, apoptosis and the migration of several cancer cell types. However, although curcumin displays anticancer potential, its clinical application is limited by its low absorption, rapid metabolism and poor bioavailability. To overcome these limitations, several curcumin-based derivatives/analogues and different drug delivery approaches have been developed. Here, we also report the anticancer mechanisms and pharmacokinetic characteristics of some derivatives/analogues and the delivery systems used. These strategies, although encouraging, require additional in vivo studies to support curcumin clinical applications.

15.
Int J Nanomedicine ; 16: 5053-5064, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34349508

RESUMO

BACKGROUND: High levels of oxidants, such as reactive oxygen species (ROS) and reactive nitrogen species (RNS), are typical characteristics of an inflammatory microenvironment and are closely associated with a various inflammatory pathologies, eg, cancer, diabetes, atherosclerosis, and neurodegenerative diseases. Therefore, the delivery of anti-inflammatory drugs by oxidation-responsive smart systems would be an efficient anti-inflammatory strategy that benefits from the selective drug release in an inflammatory site, a lower treatment dose, and minimizes side effects. PURPOSE: In this study, we present the feasibility of an oxidation-sensitive PEGylated alternating polyester, methoxyl poly(ethylene glycol)-block-poly(phthalic anhydride-alter-glycidyl propargyl ether) (mPEG-b-P(PA-alt-GPBAe)), as novel nanocarrier for curcumin (CUR), and explore the application in anti-inflammatory therapy. METHODS: The copolymers used were obtained by combining a click reaction and a ring-opening-polymerization method. CUR was loaded by self-assembly. The in vitro drug release, cytotoxicity toward RAW 264.7 cells and cellular uptake were investigated. Furthermore, the anti-inflammatory effects of CUR-loaded polymeric nanoparticles (NPs-CUR) were investigated in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages and tested in a murine model of ankle inflammation. RESULTS: Fast drug release from NPs-CUR was observed in trigger of 1 mM H2O2 in PBS. Compared with NPs and free drugs, the significant anti-inflammatory potential of NPs-CUR was proven in activated RAW 264.7 cells by inhibiting the production of TNF-α, IL-1ß, and IL-6 and increasing the level of an anti-inflammatory cytokine IL-10. Finally, a local injection of NPs-CUR at a dose of 0.25 mg/kg suppressed the acute ankle inflammatory response in mice by histological observation and further reduced the expression of pro-inflammatory cytokines in the affected ankle joints compared to that of free CUR. CONCLUSION: Both the significant in vitro and in vivo anti-inflammatory results indicated that our oxidation responsive polymeric nanoparticles are promising drug delivery systems for anti-inflammatory therapy.


Assuntos
Nanopartículas , Poliésteres/química , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Curcumina/farmacologia , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Peróxido de Hidrogênio , Camundongos , Preparações Farmacêuticas , Polietilenoglicóis
16.
Food Chem ; 355: 129509, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-33813157

RESUMO

The insoluble soy peptide aggregates formed upon proteolysis are generally considered as "ready to be discarded", which placed additional burden on related industries. In this study, with the aim of promoting sustainable utilization of these large aggregates, novel soy peptide-based nanoparticles (SPN) were successfully fabricated from these aggregates via a controlled pH-shifting method, and the obtained SPN exhibited good storage stability and antioxidant activity. Furthermore, the pH-shifting process also provided a driven force for loading and delivering curcumin, which significantly improved its water solubility (up to 105 folds), storage and simulated gastric-intestinal digestive stability, as well as in vitro bioavailability and antioxidant activity. These results indicated that controlled pH-shifting could be an effective and facile method to trigger the assembly of insoluble aggregates into functional peptide nanoparticles for the delivery of bioactive cargoes, which provided a new strategy for the sustainable and high-value application of these low-value peptide byproducts.


Assuntos
Portadores de Fármacos/química , Nanopartículas/química , Peptídeos/química , Agregados Proteicos , Proteínas de Soja/química , Antioxidantes/química , Disponibilidade Biológica , Curcumina/química , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Tamanho da Partícula , Solubilidade
17.
Food Chem ; 337: 128019, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32927227

RESUMO

In this study, the nanocomplexes as a novel delivery system for curcumin, were successfully fabricated using high methoxyl pectin (HMP), individual surfactants (rhamnolipid (Rha), tea saponin (TS) and ethyl lauroyl arginate hydrochloride (ELA)) and pea protein isolate (PPI). The optimum mass ratio between PPI and curcumin was 40:1. The HMP-Rha-PPI-Cur, HMP-TS-PPI-Cur and HMP-ELA-PPI-Cur complexes which had particle sizes of 453, 422 and 587 nm, exhibited encapsulation efficiencies of curcumin with 93.46, 92.05 and 86.73%, respectively. The analysis of FTIR revealed that HMP-surfactant-PPI-Cur complexes were formed mainly by hydrogen bonding and electrostatic attraction. XRD result showed that curcumin exhibited a non-crystallized state in the ternary complexes. Moreover, the curcumin within the HMP-Rha-PPI ternary complexes showed better stability under UV-light, thermal and simulated gastrointestinal conditions.


Assuntos
Curcumina/administração & dosagem , Proteínas de Ervilha/química , Polissacarídeos/química , Tensoativos/química , Curcumina/química , Glicolipídeos , Ligação de Hidrogênio , Modelos Biológicos , Nanopartículas/química , Tamanho da Partícula , Pectinas/química
18.
Pharmaceutics ; 13(6)2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34200405

RESUMO

The transport of macromolecular drugs such as oligonucleotides into the lungs has become increasingly relevant in recent years due to their high potency. However, the chemical structure of this group of drugs poses a hurdle to their delivery, caused by the negative charge, membrane impermeability and instability. For example, siRNA to reduce tumour necrosis factor alpha (TNF-α) secretion to reduce inflammatory signals has been successfully delivered by inhalation. In order to increase the effect of the treatment, a co-transport of another anti-inflammatory ingredient was applied. Combining curcumin-loaded mesoporous silica nanoparticles in nanostructured cylindrical microparticles stabilized by the layer-by-layer technique using polyanionic siRNA against TNF-α was used for demonstration. This system showed aerodynamic properties suited for lung deposition (mass median aerodynamic diameter of 2.85 ± 0.44 µm). Furthermore, these inhalable carriers showed no acute in vitro toxicity tested in both alveolar epithelial cells and macrophages up to 48 h incubation. Ultimately, TNF-α release was significantly reduced by the particles, showing an improved activity co-delivering both drugs using such a drug-delivery system for specific inhibition of TNF-α in the lungs.

19.
J Agric Food Chem ; 67(39): 10880-10890, 2019 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-31508956

RESUMO

A sustainable biomass-based nanocomposite hydrogel was formulated, characterized, and applied for curcumin delivery. Phytosynthesized zinc oxide nanoparticles (ZnO NPs) employing musk melon (Cucumis melo) seed extract was embedded in the hydrogel matrices and cross-linked using Dialdehyde cellulose prepared from sugarcane (Saccharum officinarum) bagasse (SCB). Nanoparticle incorporation enhanced the hydrogel's swelling degree to 4048% at pH 4.0. Also, an improved tensile strength of 14.1 ± 0.32 MPa was exhibited by the nanocomposite hydrogel compared to 9.79 ± 0.76 MPa for the pure chitosan cellulose hydrogel. A curcumin loading efficiency of 89.68% with around 30% increased loading was exhibited for the nanocomposite hydrogel. A Fickian diffusion-controlled curcumin release mechanism with maximum release at pH 7.4 was obtained. The synergistic effect on the antimicrobial activity was exhibited against Staphylococcus aureus and Trichophyton rubrum. The in vitro cytotoxicity studies employing L929 cells and A431 cells demonstrated good biocompatibility and enhanced anticancer activity of the curcumin-loaded green nanocomposite hydrogel compared to pure curcumin.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Curcumina/química , Curcumina/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Celulose/química , Quitosana/química , Cucumis melo/química , Portadores de Fármacos/química , Hidrogéis/química , Nanocompostos/química , Nanopartículas/química , Sementes/química , Staphylococcus aureus/efeitos dos fármacos , Trichophyton/efeitos dos fármacos , Trichophyton/crescimento & desenvolvimento , Óxido de Zinco/química
20.
Adv Med Sci ; 63(2): 257-264, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29486375

RESUMO

PURPOSE: In this research, aspartic acid functionalized PEGylated mesoporous silica nanoparticlesgraphene oxide nanohybrid (As-PEGylated-MSN@GO) prepared as a pH-responsive drug carrier for the curcumin delivery. For better camouflage during blood circulation, poly(ethylene glycol) was decorated on the surface of MSN@GO nanohybrid. MATERIALS AND METHODS: The nanocarrier was characterized by using X-ray powder diffraction (XRD), dynamic light scattering (DLS), UV-vis spectroscopy, thermal gravimetry analysis (TGA), FT-IR, SEM and TEM. RESULTS: The size of modified MSN@GO was around 75.8 nm and 24% wt. of curcumin was loaded on the final nanohybrid. pHdecrement from 7.4 to 5.8 the release medium led to increase the cumulative amount of drug release from 54% to 98%. CONCLUSIONS: As-functionalized MSN@GO had no cytotoxicity against human breast adenocarcinoma (MCF-7) and human mammary epithelial (MCF10A) as cancerous and normal cell lines, respectively. Whereas curcuminloaded nanohybrid showed excellent killing capability against MCF-7 cells.


Assuntos
Ácido Aspártico/química , Sistemas de Liberação de Medicamentos , Grafite/química , Nanopartículas/química , Polietilenoglicóis/química , Dióxido de Silício/química , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Curcumina/farmacologia , Liberação Controlada de Fármacos , Difusão Dinâmica da Luz , Humanos , Células MCF-7 , Nanopartículas/ultraestrutura , Espectroscopia de Infravermelho com Transformada de Fourier , Eletricidade Estática , Temperatura , Termogravimetria , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa