Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Sensors (Basel) ; 24(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38894305

RESUMO

This paper presents a current-mode VCSEL driver (CMVD) implemented using 180 nm CMOS technology for application in short-range LiDAR sensors, in which current-steering logic is suggested to deliver modulation currents from 0.1 to 10 mApp and a bias current of 0.1 mA simultaneously to the VCSEL diode. For the simulations, the VCSEL diode is modeled with a 1.6 V forward-bias voltage and a 50 Ω series resistor. The post-layout simulations of the proposed CMVD clearly demonstrate large output pulses and eye-diagrams. Measurements of the CMVD demonstrate large output pulses, confirming the simulation results. The chip consumes a maximum of 11 mW from a 3.3 V supply, and the core occupies an area of 0.1 mm2.

2.
Int J Audiol ; 60(3): 232-237, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32967485

RESUMO

OBJECTIVE: To evaluate the benefit of combined current focusing and steering to speech recognition in noise with cochlear implants (CIs). DESIGN: Combined current focusing and steering was implemented using focused partial tripolar (pTP) mode with two current steering ranges. The two pTPsteering strategies were compared to a monopolar (MP) strategy without current focusing or steering and a pTP strategy with only current focusing using the Hearing in Noise Test. The strategies differed only in stimulation mode. STUDY SAMPLE: Ten post-lingually deafened adult CI users participated in this study. RESULTS: Compared to the MP strategy, both pTPsteering strategies produced significantly better speech reception thresholds, while the pTP strategy did not. Subjects with better baseline MP performance had less improvements with the pTPsteering strategies. All four strategies were experimental low-rate strategies and none of them outperformed subjects' clinical strategies. CONCLUSIONS: Speech recognition in noise was better with the pTPsteering strategies than with the MP strategy, but the effect of pTP-mode current steering on spectral resolution is yet to be tested.


Assuntos
Implante Coclear , Implantes Cocleares , Percepção da Fala , Adulto , Audição , Humanos , Ruído/efeitos adversos
3.
Sensors (Basel) ; 20(7)2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32272594

RESUMO

This paper proposes a compact, high-linearity, and reconfigurable continuous-time filter with a wide frequency-tuning capability for biopotential conditioning. It uses an active filter topology and a new operational-transconductance-amplifier (OTA)-based current-steering (CS) integrator. Consequently, a large time constant τ , good linearity, and linear bandwidth tuning could be achieved in the presented filter with a small silicon area. The proposed filter has a reconfigurable structure that can be operated as a low-pass filter (LPF) or a notch filter (NF) for different purposes. Based on the novel topology, the filter can be readily implemented monolithically and a prototype circuit was fabricated in the 0.18 µm standard complementary-metal-oxide-semiconductor (CMOS) process. It occupied a small area of 0.068 mm2 and consumed 25 µW from a 1.8 V supply. Measurement results show that the cutoff frequency of the LPF could be linearly tuned from 0.05 Hz to 300 Hz and the total-harmonic-distortion (THD) was less than -76 dB for a 2 Hz, 200 mVpp sine input. The input-referred noises were 5.5 µVrms and 6.4 µVrms for the LPF and NF, respectively. A comparison with conventional designs reveals that the proposed design achieved the lowest harmonic distortion and smallest on-chip capacitor. Moreover, its ultra-low cutoff frequency and relatively linear frequency tuning capability make it an attractive solution as an analog front-end for biopotential acquisitions.


Assuntos
Técnicas Biossensoriais/métodos , Semicondutores , Amplificadores Eletrônicos , Técnicas Biossensoriais/instrumentação , Eletrocardiografia , Desenho de Equipamento , Metais/química , Óxidos/química , Razão Sinal-Ruído
4.
Neuromodulation ; 23(4): 469-477, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31423642

RESUMO

OBJECTIVE: A computational model that accounts for heterogeneous tissue properties was used to compare multiple independent current control (MICC), multi-stim set (MSS), and concurrent activation (co-activation) current steering technologies utilized in deep brain stimulation (DBS) on volume of tissue activated (VTA) and power consumption. METHODS: A computational model was implemented in Sim4Life v4.0 with the multimodal image-based detailed anatomical (MIDA) model, which accounts for heterogeneous tissue properties. A segmented DBS lead placed in the subthalamic nucleus (STN). Three milliamperes of current (with a 90 µs pseudo-biphasic waveform) was distributed between two electrodes with various current splits. The laterality, directional accuracy, volume, and shape of the VTAs using MICC, MSS and co-activation, and their power consumption were computed and compared. RESULTS: MICC, MSS, and coactivation resulted in less laterality of steering than single-segment activation. Both MICC and MSS show directional inaccuracy (more pronounced with MSS) during radial current steering. Co-activation showed greater directional accuracy than MICC and MSS at centerline between the two activated electrodes. MSS VTA volume was smaller and more compact with less current spread outside the active electrode plane than MICC VTA. There was no consistent pattern of power drain between MSS and MICC, but electrode co-activation always used less power than either fractionating paradigm. CONCLUSION: While current fractionalization technologies can achieve current steering between two segmented electrodes, this study shows that there are important limitations in accuracy and focus of tissue activation when tissue heterogeneity is accounted for.


Assuntos
Estimulação Encefálica Profunda/métodos , Análise de Elementos Finitos , Modelos Neurológicos , Humanos
5.
Mov Disord ; 30(11): 1461-70, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26274629

RESUMO

Functional neurosurgery for Parkinson's disease has become a mainstream concept with DBS as the prime modality. This article reviews the latest and, in the eyes of the authors, the most important developments in DBS, lesioning and gene therapy. In DBS, emerging advances have focused on the timing of surgery relative to disease duration and severity, and new targets, technologies, and equipment. For lesions, new ultrasound techniques are emerging based on successes in other movement disorders. Gene and cellular therapies, including stem cells, remain only in the research realm.


Assuntos
Encéfalo/fisiologia , Estimulação Encefálica Profunda/métodos , Procedimentos Neurocirúrgicos/métodos , Doença de Parkinson/terapia , Humanos , Imageamento por Ressonância Magnética , Tomografia Computadorizada por Raios X
6.
Neuromodulation ; 18(7): 542-50; discussion 550-1, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26245306

RESUMO

OBJECTIVE: Deep brain stimulation (DBS) alleviates symptoms associated with some neurological disorders by stimulating specific deep brain targets. However, incomplete stimulation of the target region can provide suboptimal therapy, and spread of stimulation to tissue outside the target can generate side-effects. Existing DBS electrodes generate stimulation profiles that are roughly spherical, neither matching nor enabling the mapping of therapeutic targets. We present a novel electrode design and will perform computational modeling of the new design to investigate its use as a next generation DBS electrode. MATERIALS AND METHODS: Computational simulations of a finite element model are performed for both the novel electrode and for a commercially available DBS electrode. RESULTS: Computational modeling results show that this new electrode design is able to steer stimulation radially around the device, creating voltage distributions that may more closely match deep brain targets. CONCLUSION: The ability to better match the anatomy and compensate for targeting errors during implantation will enable strict localization of the generated stimulation fields to within target tissues, potentially providing more complete symptom alleviation while reducing the occurrence of side-effects.


Assuntos
Encéfalo/fisiologia , Simulação por Computador , Estimulação Encefálica Profunda/instrumentação , Estimulação Encefálica Profunda/métodos , Eletrodos , Modelos Neurológicos , Animais , Impedância Elétrica , Humanos
7.
J Neural Eng ; 20(3)2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37267940

RESUMO

Objective.Blindness affects approximately 40 million people worldwide and has inspired the development of cortical visual prostheses for restoring sight. Cortical visual prostheses electrically stimulate neurons of the visual cortex to artificially evoke visual percepts. Of the 6 layers of the visual cortex, layer 4 contains neurons that are likely to evoke a visual percept. Intracortical prostheses therefore aim to target layer 4; however, this can be difficult due to cortical curvature, inter-subject cortical variability, blindness-induced anatomical changes in cortex, and electrode placement variations. We investigated the feasibility of using current steering to stimulate specific cortical layers between electrodes in the laminar column.Approach.We explored whether the multiunit neural activity peak can be manipulated between two simultaneously stimulating electrodes in different layers of the cortical column. A 64-channel, 4-shank electrode array was implanted into the visual cortex of Sprague-Dawley rats (n= 7) orthogonal to the cortical surface. A remote return electrode was positioned over the frontal cortex in the same hemisphere. Charge was supplied to two stimulating electrodes along a single shank. Differing ratios of charge (100:0, 75:25, 50:50) and separation distances (300-500µm) were tested.Results.Current steering across the cortical layers did not result in a consistent shift of the neural activity peak. Both single-electrode and dual-electrode stimulation induced activity throughout the cortical column. This contrasts observations that current steering evoked a controllable peak of neural activity between electrodes implanted at similar cortical depths. However, dual-electrode stimulation across the layers did reduce the stimulation threshold at each site compared to single-electrode stimulation.Significance.Multi-electrode stimulation is not suitable for targeted activation of layers using current steering. However, it can be used to reduce activation thresholds at adjacent electrodes within a given cortical layer. This may be applied to reduce the stimulation side effects of neural prostheses, such as seizures.


Assuntos
Próteses Visuais , Ratos , Animais , Eletrodos Implantados , Estimulação Elétrica/métodos , Ratos Sprague-Dawley , Potenciais Evocados Visuais
8.
Mov Disord Clin Pract ; 10(3): 434-439, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36949800

RESUMO

Background: Directional deep brain stimulation (DBS) allows for steering of the stimulation field, but extensive and time-consuming testing of all segmented contacts is necessary to identify the possible benefit of steering. It is therefore important to determine under which circumstances directional current steering is advantageous. Methods: Fifty two Parkinson's disease patients implanted in the STN with a directional DBS system underwent a standardized monopolar programming session 5 to 9 months after implantation. Individual contacts were tested for a potential advantage of directional stimulation. Results were used to build a prediction model for the selection of ring levels that would benefit from directional stimulation. Results: On average, there was no significant difference in therapeutic window between ring-level contact and best directional contact. However, according to our standardized protocol, 35% of the contacts and 66% of patients had a larger therapeutic window under directional stimulation compared to ring-mode. The segmented contacts warranting directional current steering could be predicted with a sensitivity of 79% and a specificity of 57%. Conclusion: To reduce time required for DBS programming, we recommend additional directional contact testing initially only on ring-level contacts with a therapeutic window of less than 2.0 mA.

9.
Front Pain Res (Lausanne) ; 4: 1028368, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36910254

RESUMO

Spinal Cord Stimulation (SCS) with leads embedded in the epidural space has become a recognized and effective clinical therapy for chronic pain relief. Leads with multiple electrodes placed close to the spinal cord allow targeted stimulation. This paper presents a novel current steering method to achieve targeted spinal cord stimulation by determining the optimal current sourced through a set of electrodes to maximize current density in a specified region of the spinal cord. The method provides a flexibility for personalized pain relief therapy, while minimizing stimulation in unwanted regions. The paper proposes a new optimization problem to achieve current steering. The optimization problem uses a solution of the Poisson equation evaluated using Finite Element Analysis (FEA) over a geometric model of the spinal cord and the embedded leads. The solution to the optimization problem determines the optimal current sourced through a set of electrodes to achieve a targeted stimulation.

10.
World Neurosurg ; 170: 54-63.e1, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36435384

RESUMO

BACKGROUND: The use of directional deep brain stimulation (dDBS) electrodes for the treatment of movement disorders such as Parkinson disease (PD) has become relatively widespread. However, the efficacy of dDBS relative to its omnidirectional deep brain stimulation (oDBS) counterpart is not well characterized. This systematic review aims to synthesize the literature comparing clinical and therapeutic outcomes of dDBS relative to oDBS in patients with PD. METHODS: A systematic literature search for studies with comparative clinical outcome data between dDBS and oDBS was performed across the PubMed, Ovid MEDLINE, and Web of Science databases. Data including therapeutic window (TW) and surrogate measures and the Unified Parkinson's Disease Rating Scale score were collected and summarized across multiple time periods. RESULTS: Ten studies met the eligibility criteria. Three of these studies evaluated motor performance in the form of Unified Parkinson's Disease Rating Scale III, with none finding differences between dDBS and oDBS. Two studies assessed quality-of-life measures with neither finding differences between dDBS and oDBS. TW or a surrogate measure was assessed in 6 studies; 5 studies found an increase or strong trend toward increase in dDBS relative to oDBS. CONCLUSIONS: The current evidence, although limited by bias, does suggest that dDBS in the treatment of PD yields improvements in motor symptoms and quality of life that are comparable to oDBS; TW and surrogate measures are consistently improved in patients with PD under a directional configuration relative to omnidirectional.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Humanos , Doença de Parkinson/terapia , Qualidade de Vida , Resultado do Tratamento , Eletrodos
11.
J Neural Eng ; 19(3)2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35688125

RESUMO

Objective.Intracortical visual prostheses are being developed to restore sight in people who are blind. The resolution of artificial vision is dictated by the location, proximity and number of electrodes implanted in the brain. However, increasing electrode count and proximity is traded off against tissue damage. Hence, new stimulation methods are needed that can improve the resolution of artificial vision without increasing the number of electrodes. We investigated whether a technique known as current steering can improve the resolution of artificial vision provided by intracortical prostheses without increasing the number of physical electrodes in the brain.Approach.We explored how the locus of neuronal activation could be steered when low amplitude microstimulation was applied simultaneously to two intracortical electrodes. A 64-channel, four-shank electrode array was implanted into the visual cortex of rats (n= 7). The distribution of charge ranged from single-electrode stimulation (100%:0%) to an equal distribution between the two electrodes (50%:50%), thereby steering the current between the physical electrodes. The stimulating electrode separation varied between 300 and 500µm. The peak of the evoked activity was defined as the 'virtual electrode' location.Main results.Current steering systematically shifted the virtual electrode on average between the stimulating electrodes as the distribution of charge was moved from one stimulating electrode to another. This effect was unclear in single trials due to the limited sampling of neurons. A model that scales the cortical response to each physical electrode when stimulated in isolation predicts the evoked virtual electrode response. Virtual electrodes were found to elicit a neural response as effectively and predictably as physical electrodes within cortical tissue on average.Significance.Current steering could be used to increase the resolution of intracortical electrode arrays without altering the number of physical electrodes which will reduce neural tissue damage, power consumption and potential heat dispersion issues.


Assuntos
Córtex Visual , Próteses Visuais , Animais , Estimulação Elétrica/métodos , Eletrodos Implantados , Potenciais Evocados Visuais , Humanos , Ratos , Córtex Visual/fisiologia
12.
J Neural Eng ; 19(5)2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36055219

RESUMO

Objective.PRIMA, the photovoltaic subretinal prosthesis, restores central vision in patients blinded by atrophic age-related macular degeneration (AMD), with a resolution closely matching the 100µm pixel size of the implant. Improvement in resolution requires smaller pixels, but the resultant electric field may not provide sufficient stimulation strength in the inner nuclear layer (INL) or may lead to excessive crosstalk between neighboring electrodes, resulting in low contrast stimulation patterns. We study the approaches to electric field shaping in the retina for prosthetic vision with higher resolution and improved contrast.Approach.We present a new computational framework, Retinal Prosthesis Simulator (RPSim), that efficiently computes the electric field in the retina generated by a photovoltaic implant with thousands of electrodes. Leveraging the PRIMA clinical results as a benchmark, we use RPSim to predict the stimulus strength and contrast of the electric field in the retina with various pixel designs and stimulation patterns.Main results.We demonstrate that by utilizing monopolar pixels as both anodes and cathodes to suppress crosstalk, most patients may achieve resolution no worse than 48µm. Closer proximity between the electrodes and the INL, achieved with pillar electrodes, enhances the stimulus strength and contrast and may enable 24µm resolution with 20µm pixels, at least in some patients.Significance.A resolution of 24µm on the retina corresponds to a visual acuity of 20/100, which is over 4 times higher than the current best prosthetic acuity of 20/438, promising a significant improvement of central vision for many AMD patients.


Assuntos
Membros Artificiais , Próteses Visuais , Estimulação Elétrica , Eletrodos Implantados , Humanos , Desenho de Prótese , Implantação de Prótese/métodos , Retina/fisiologia , Acuidade Visual
13.
J Neural Eng ; 18(4)2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33684894

RESUMO

Electrical stimulation of neural tissue is used in both clinical and experimental devices to evoke a desired spatiotemporal pattern of neural activity. These devices induce a local field that drives neural activation, referred to as an activating function or generator signal. In visual prostheses, the spread of generator signal from each electrode within the neural tissue results in a spread of visual perception, referred to as a phosphene.Objective.In cases where neighbouring phosphenes overlap, it is desirable to use current steering or neural activity shaping strategies to manipulate the generator signal between the electrodes to provide greater control over the total pattern of neural activity. Applying opposite generator signal polarities in neighbouring regions of the retina forces the generator signal to pass through zero at an intermediate point, thus inducing low neural activity that may be perceived as a high-contrast line. This approach provides a form of high contrast visual perception, but it requires partitioning of the target pattern into those regions that use positive or negative generator signals. This discrete optimization is an NP-hard problem that is subject to being trapped in detrimental local minima.Approach.This investigation proposes a new partitioning method using image segmentation to determine the most beneficial positive and negative generator signal regions. Utilizing a database of 1000 natural images, the method is compared to alternative approaches based upon the mean squared error of the outcome.Main results.Under nominal conditions and with a set computation limit, partitioning provided improvement for 32% of these images. This percentage increased to 89% when utilizing image pre-processing to emphasize perceptual features of the images. The percentage of images that were dealt with most effectively with image segmentation increased as lower computation limits were imposed on the algorithms.Significance.These results provide a new method to increase the resolution of neural stimulating arrays and thus improve the experience of visual prosthesis users.


Assuntos
Próteses Visuais , Estimulação Elétrica/métodos , Fosfenos , Retina/fisiologia , Visão Ocular , Percepção Visual/fisiologia
14.
Front Comput Neurosci ; 14: 561180, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33101000

RESUMO

Objective: To study the effect of directional deep brain stimulation (DBS) electrode configuration and vertical electrode spacing on the volume of tissue activated (VTA) in the globus pallidus, pars interna (GPi). Background: Directional DBS leads may allow clinicians to precisely direct current fields to different functional networks within traditionally targeted brain areas. Modeling the shape and size of the VTA for various monopolar or bipolar configurations can inform clinical programming strategies for GPi DBS. However, many computational models of VTA are limited by assuming tissue homogeneity. Methods: We generated a multimodal image-based detailed anatomical (MIDA) computational model with a directional DBS lead (1.5 mm or 0.5 mm vertical electrode spacing) placed with segmented contact 2 at the ventral posterolateral "sensorimotor" region of the GPi. The effect of tissue heterogeneity was examined by replacing the MIDA tissues with a homogeneous tissue of conductance 0.3 S/m. DBS pulses (amplitude: 1 mA, pulse width: 60 µs, frequency: 130 Hz) were used to produce VTAs. The following DBS contact configurations were tested: single-segment monopole (2B-/Case+), two-segment monopole (2A-/2B-/Case+ and 2B-/3B-/Case+), ring monopole (2A-/2B-/2C-/Case+), one-cathode three-anode bipole (2B-/3A+/3B+/3C+), three-cathode three-anode bipole (2A-/2B-/2C-/3A+/3B+/3C+). Additionally, certain vertical configurations were repeated with 2 mA current amplitude. Results: Using a heterogeneous tissue model affected both the size and shape of the VTA in GPi. Electrodes with both 0.5 mm and 1.5 mm vertical spacing (1 mA) modeling showed that the single segment monopolar VTA was entirely contained within the GPi when the active electrode is placed at the posterolateral "sensorimotor" GPi. Two segments in a same ring and ring settings, however, produced VTAs outside of the GPi border that spread into adjacent white matter pathways, e.g., optic tract and internal capsule. Both stacked monopolar settings and vertical bipolar settings allowed activation of structures dorsal to the GPi in addition to the GPi. Modeling of the stacked monopolar settings with the DBS lead with 0.5 mm vertical electrode spacing further restricted VTAs within the GPi, but the VTA volumes were smaller compared to the equivalent settings of 1.5 mm spacing.

15.
J Neural Eng ; 17(6)2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33086210

RESUMO

Objective.The spatial resolution of an implantable neural stimulator can be improved by creation of virtual channels (VCs). VCs are commonly achieved through synchronized stimulation of multiple electrodes. It remains unknown whether asynchronous stimulation is able to generate comparable VC performance in retinal stimulation, and how VC can be optimized by re-designing stimulation settings. This study begins with exploring the feasibility of creating VCs using synchronous and asynchronous epiretinal stimulation, and ending with predicting the possible VC performance with a thorough exploration of stimulation parameter space.Approach.A computational model of epiretinal dual-electrode stimulation is developed to simulate the neural activity of a population of retinal ganglion cells (RGCs) under both synchronous and asynchronous stimulation conditions. The interaction between the electrode and RGCs under a range of stimulation parameters are simulated.Main results.Our simulation based on direct RGC activation suggests that VCs can be created using asynchronous stimulation. Two VC performance measures: 1) linearity in the change in centroid location of activated RGC populations, and 2) consistency in the size of activated RGC populations, have comparable performance under asynchronous and synchronous stimulation with appropriately selected stimulation parameters.Significance.Our findings support the possibility of creating VCs by directly activating RGCs under synchronous and asynchronous stimulation conditions. This study establishes the fundamental capability of VC creation based on temporal interactions within the RGC population alone and does not include the effects of potential indirect activation of any surviving inner retinal network neurons. Our results provide theoretical evidence for designing next-generation retinal prosthesis with higher spatial resolution.


Assuntos
Simulação por Computador , Retina , Próteses Visuais , Estimulação Elétrica/métodos , Eletrodos , Células Ganglionares da Retina/fisiologia
16.
Hear Res ; 390: 107949, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32200300

RESUMO

Phantom electrode (PE) stimulation can extend the lower limit of pitch perception with cochlear implants (CIs) by using simultaneous out-of-phase stimulation of the most apical primary electrode and the adjacent basal compensating electrode. The total electrical field may push the excitation pattern beyond the most apical electrode to elicit a lower pitch, depending on the ratio of current between the compensating and primary electrodes (i.e., the compensation coefficient σ). This study tested the hypothesis that dynamic current steering of PE stimuli can be implemented by varying σ over time to encode spectral details in low frequencies. To determine the range of σ for current steering and the corresponding current levels, Experiment 1 tested CI users' loudness balance and pitch ranking of static PE stimuli with σ from 0 to 0.6 in steps of 0.2. It was found that the equal-loudness most comfortable level significantly increased with σ and can be modeled by a piecewise linear function of σ. Consistent with the previous findings, higher σ elicited either lower or similar pitches without salient pitch reversals than lower σ. Based on the results of Experiment 1, Experiment 2 created flat, rising, and falling pitch contours of 300-1000 ms using dynamic PE stimuli with time-varying σ from 0 to 0.6 and equal-loudness current levels. In a pitch contour identification (PCI) task, CI users scored 80% and above on average. Increasing the stimulus duration from 300 to 1000 ms slightly but did not significantly improve the PCI scores. Across subjects, the 1000-ms PCI scores in Experiment 2 were significantly correlated with the cumulative pitch-ranking sensitivity in Experiment 1. It is thus feasible to use dynamic current steering with PE to encode low-frequency pitch cues for CI users.


Assuntos
Implante Coclear/instrumentação , Implantes Cocleares , Sinais (Psicologia) , Surdez/reabilitação , Pessoas com Deficiência Auditiva/reabilitação , Percepção da Altura Sonora , Estimulação Acústica , Adulto , Idoso , Surdez/diagnóstico , Surdez/fisiopatologia , Surdez/psicologia , Estimulação Elétrica , Feminino , Audição , Humanos , Percepção Sonora , Masculino , Pessoa de Meia-Idade , Pessoas com Deficiência Auditiva/psicologia , Discriminação da Altura Tonal
17.
Expert Rev Neurother ; 20(4): 319-331, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32116065

RESUMO

Introduction: Essential tremor (ET) is a common movement disorder with an estimated prevalence of 0.9% worldwide. Deep brain stimulation (DBS) is an established therapy for medication refractory and debilitating tremor. With the arrival of next generation technology, the implementation and delivery of DBS has been rapidly evolving. This review will highlight the current applications and constraints for DBS in ET.Areas covered: The mechanism of action, targets for neuromodulation, next generation guidance techniques, symptom-specific applications, and long-term efficacy will be reviewed.Expert opinion: The posterior subthalamic area and zona incerta are alternative targets to thalamic DBS in ET. However, they may be associated with additional stimulation-induced side effects. Novel stimulation paradigms and segmented electrodes provide innovative approaches to DBS programming and stimulation-induced side effects.


Assuntos
Estimulação Encefálica Profunda , Tremor Essencial/terapia , Avaliação de Resultados em Cuidados de Saúde , Estimulação Encefálica Profunda/instrumentação , Estimulação Encefálica Profunda/métodos , Estimulação Encefálica Profunda/normas , Humanos
18.
Cureus ; 11(7): e5276, 2019 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-31576268

RESUMO

This index case report describes the intraoperative use of an eight-contact directional deep brain stimulation (DBS) lead to avoid adjustment and repeat microelectrode passes after the initial pass elicited side-effects that suggested a slightly anteriorly placed lead. While targeting the subthalamic nucleus (STN), intraoperative microelectrode recording (MER) confirmed that lead positioning and macrostimulation resulted in response at 1 mA but sustained dysarthria at 2 mA. This suggested a slightly anteriorly located electrode. The patient was becoming anxious, so instead of lead adjustment, an eight-contact directional DBS lead was placed to take advantage of the directional contacts, noting that a repeat pass could always then be performed. Segmented contact 11C showed symptom response at 0.5 mA and side-effect at 4 mA, resulting in a 3.5 mA therapeutic window. Though no substitute for an accurately placed lead, this result suggests that the flexibility of directional stimulation could be considered in the intraoperative setting.

19.
Brain Stimul ; 11(3): 600-606, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29373260

RESUMO

BACKGROUND: Directional Deep Brain Stimulation (D-DBS) allows axially asymmetric electrical field shaping, away from structures causing side-effects. However, concerns regarding the impact on device lifespan and complexity of the monopolar survey have contributed to sparing use of these features. OBJECTIVE: To investigate whether chronically implanted D-DBS systems can improve the therapeutic window, without a negative impact on device lifespan, in thalamic deep brain stimulation (DBS). METHODS: We evaluated stable outcomes of initial programming sessions (4-6 weeks post-implantation) retrospectively in 8 patients with drug-resistant disabling tremor syndromes. We assessed the impact of directional stimulation on the Therapeutic Window (TW), Therapeutic Current Strength (TCS), tremor scores, disability scores and total electrical energy delivered. Finally, we performed Volume of Tissue Activation (VTA) modelling, based on a range of parameters. RESULTS: We report significant gains in TW (91%) and reductions in TCS (31%) with stimulation in the best direction compared to best omnidirectional stimulation alternative. Tremor and ADL scores improvements remained unchanged at six months. There was no increase in averaged IPG power consumption (there is a 6% reduction over the omnidirectional-only alternative). Illustrative VTA modelling shows that D-DBS achieves 85% of the total activation volume at just 69% of the stimulation amplitude of non-directional configuration. CONCLUSIONS: D-DBS can improve the therapeutic window over non-directional DBS, leading to significant reduction in disability that may be sustained without additional reprogramming visits. When averaged across the cohort, power output and predicted device lifespan was not impacted by the use of directional stimulation in this study.


Assuntos
Estimulação Encefálica Profunda/instrumentação , Estimulação Encefálica Profunda/métodos , Tálamo/fisiologia , Tremor/terapia , Idoso , Eletrodos Implantados , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Neurológicos , Estudos Retrospectivos
20.
Front Neurol ; 9: 544, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30026728

RESUMO

This index case report describes a novel programming approach that utilizes the 8-contact directional Deep Brain Stimulation (DBS) lead to effectively control the akinesia, rigidity and tremor of Parkinson's Disease (PD), as well as a severe kinetic tremor of Essential Tremor (ET), in a patient with overlapping symptoms of both PD and ET. Through utilizing a bipolar directional montage on a single segmented contact, symptom control was attained via likely co-activation of the Subthalamic Nucleus (STN) and the adjacent Zona Incerta (ZI). The patient is a 67-year-old professional guitarist with a long-standing diagnosis of ET manifesting with bilateral kinetic tremor, who then developed right lateralizing symptoms indicative of PD. After optimal medical management did not confer sufficient control, he underwent left-sided unilateral DBS targeting the STN. Both intraoperatively and post-operatively, omnidirectional, and directional electrode review resulted in significant akinesia, rigidity, and as well as resting tremor control but failed to sufficiently improve the kinetic tremor. As electrode 2B was shown to be the most efficacious with the largest therapeutic window, a bipolar directional montage on a single segmented contact was tried with the idea of possibly further extending the axial asymmetry of the directional stimulation toward the adjacent ZI to impact the kinetic tremor. This montage resulted in full kinetic and resting tremor control as well as akinesia and rigidity response [2B cathode (-), 2A anode (+), 2C anode (+) (1.4 mA, rate 160 Hz, pulse width 60 µs)]. At 6 months post initial programming, no montage changes have been made, and the patient has experienced a reduction in Motor UPDRS scores from 23 to 3 (evaluated off medication), full resolution of kinetic tremor and normalization of handwriting, as well as significant reduction in his medication requirements. This patient's response to a single segment bipolar directional montage, and lack of response from monopolar directional stimulation in the same area, does suggest the possibility of further axial asymmetric tissue activation and thus co-activation of both the dorsal STN and adjacent ZI. Further modeling and study are warranted.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa