Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 20(18)2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32967178

RESUMO

Advanced piezoelectric dynamometers with a wide frequency bandwidth are required for cutting force measurement in high-speed milling and micromilling applications. In many applications, the signal bandwidth is limited by the dynamic response of the mechanical system, thus compensation techniques are necessary. The most effective compensation techniques for a full 3D force correction require an accurate and complex identification phase. Extended Kalman filtering is a better alternative for input force estimation in the presence of unknown dynamic disturbances. The maximum bandwidth that can be currently achievable by Kalman filtering is approximately 2 kHz, due to crosstalk disturbances and complex dynamometer's dynamics. In this work, a novel upgraded Kalman filter based on a more general model of dynamometer dynamics is conceived, by also taking into account the influence of the force application point. By so doing, it was possible to extend the frequency bandwidth of the device up to more than 5 kHz along the main directions and up to more than 3 kHz along the transverse directions, outperforming state-of-the-art methods based on Kalman filtering.

2.
Sensors (Basel) ; 20(13)2020 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-32635361

RESUMO

The intensity of the clamping force during milling operations is very important, because an excessive clamping force can distort the workpiece, while inadequate clamping causes slippage of the workpiece. Since the overall clamping force can be affected by the cutting forces throughout machining, it is necessary to monitor the change of clamping and the cutting forces during the process. This paper proposes a hybrid system in the form of a vise with built-in strain gauges and in-house-developed piezoelectric sensors for simultaneous measurement of clamping and cutting forces. Lead zirconate titanate (PZT) sensors are fabricated and embedded in a layered jaw to measure the dynamic forces of the machine tool. A cross-shaped groove within the jaw is designed to embed strain gauges, which predominantly measure the static clamping forces. Sensor fusion technology combining the signals of the strain gauges and PZT piezoelectric sensors is used to investigate the interactions between cutting forces and clamping forces. The results show average errors of 11%, 17%, and 6% for milling forces in X, Y, and Z directions, respectively; and 19% error for clamping forces, confirming the capability of the setup to monitor the forces in milling.

3.
Sensors (Basel) ; 20(16)2020 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-32823686

RESUMO

Machining processes remain an unavoidable technique in the production of high-precision parts. Tool behavior is of the utmost importance in machining productivity and costs. Tool performance can be assessed by the roughness left on the machined surfaces, as well as of the forces developed during the process. There are various techniques to determine these cutting forces, such as cutting force prediction or measurement, using dynamometers and other sensor systems. This technique has often been used by numerous researchers in this area. This paper aims to give a review of the different techniques and devices for measuring the forces developed for machining processes, allowing a quick perception of the advantages and limitations of each technique, through the literature research carried out, using recently published works.

4.
Sensors (Basel) ; 18(12)2018 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-30544961

RESUMO

Multi-sensor data fusion systems entail the optimization of a wide range of parameters related to the selection of sensors, signal feature extraction methods, and predictive modeling techniques. The monitoring of automated machining systems enables the intelligent supervision of the production process by detecting malfunctions, and providing real-time information for continuous process optimization, and production line decision-making. Monitoring technologies are essential for the reduction of production times and costs, and an improvement in product quality, discarding the need for post-process quality controls. In this paper, a multi-sensor data fusion system for the real-time surface quality control based on cutting force, vibration, and acoustic emission signals was assessed. A total of four signal processing methods were analyzed: time direct analysis (TDA), power spectral density (PSD), singular spectrum analysis (SSA), and wavelet packet transform (WPT). Owing to the nonlinear and stochastic nature of the process, two predictive modeling techniques, multiple regression and artificial neural networks, were evaluated to correlate signal parametric characterization with surface quality. The results showed a high correlation of surface finish with cutting force and vibration signals. The signal processing methods based on signal decomposition in a combined time and frequency domain (SSA and WPT) exhibited better signal feature extraction, detecting excitation frequency ranges correlated to surface finish. The artificial neural network model obtained the highest predictive power, with better behavior for the whole data range. The proposed on-line multi-sensor data fusion provided significant improvements for in-process quality control, with excellent predictive power, reliability, and response times.

5.
Micromachines (Basel) ; 15(7)2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-39064325

RESUMO

Size effects, high thrust forces, limited heat dissipation, and tool deterioration are just some of the challenges that deep microdrilling poses, underscoring the importance of effective process control to ensure quality. In this paper, an investigation performed on a microdrilling process on pure magnesium using a 0.138 mm diameter microdrill to achieve an aspect ratio equal to 36 is proposed. The effect of the variation of the cutting parameters feed per tooth fz and cutting speed vc was studied on thrust force, supporting hole quality evaluation in terms of burr height, entrance, and inner diameters. The results showed that fz significantly influences the hole quality. In fact, as fz increases, the burr height decreases and the inner diameter approaches the nominal diameter. However, optimizing the hole geometry with high feed per tooth values increases the thrust forces, compromising tool life. In fact, a significant dependence of the thrust force on both cutting parameters was found. In this scenario, increasing vc can mitigate the high thrust forces by inducing material softening. The study results improve precision manufacturing by refining parameters, ensuring the quality and reliability of magnesium-based microcomponents.

6.
Materials (Basel) ; 17(14)2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39063767

RESUMO

Abrasion wear is a significant concern for cutting tools, particularly when milling asphalt concrete due to the presence of hard mineral aggregate particles. The pressure exerted on the cutting tool by the chipped material and the resulting cutting forces directly influence tool wear. To estimate the cutting forces in asphalt milling, the authors propose using either laboratory experiments or cost-effective Discrete Element Method (DEM) modeling-by simulating the real conditions-as direct measurement under real conditions is challenging. This article presents results from an original experimental program aimed at determining the cutting forces during asphalt pavement milling. A specialized stand equipped with a moving plate and recording devices was designed to vary milling depth, rotational speed, and advance speed. The experimental results for horizontal force values were compared with numerical results from DEM modeling. It was found that both increasing the milling depth and the advance speed lead to higher cutting forces. Generally, DEM modeling trends align with experimental results, although DEM values are generally higher. The statistical analysis allowed identification of the milling depth as the most significant parameter influencing cutting force and the optimal combination of milling parameters to achieve minimum horizontal force acting on cutting tooth, namely, 15 mm milling depth and 190 mm/min advanced speed.

7.
Micromachines (Basel) ; 15(3)2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38542562

RESUMO

Granite edge finishing through grinding is a common process in the granite processing industry, crucial for achieving the final desired shape and edge quality of products. This study focuses on the granite industry, specifically delving into the significance of grinding and polishing for improving aesthetics and extending material longevity. The experimental design entails a comprehensive factorial experiment plan involving two workpiece materials (white and black granite samples) and two cutting tool edge shapes (chamfer and concave), each with two grit sizes: G150 and G600. The cutting conditions varied and consisted of variations in spindle speeds (1500, 2500, 3500 rpm), feed rates (500, 1000, 1500 mm/min), and lubrication modes (wet/dry). The results uncover intricate relationships among these parameters and part quality, underscoring the pivotal role of tool geometry in achieving superior surface finishes and in controlling the cutting forces. These findings contribute to a nuanced understanding of the dynamic interplay between tool characteristics, material properties, and machining conditions within the granite industry.

8.
Front Neurosci ; 18: 1286991, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38406585

RESUMO

Optimal epoxy resin embedding is crucial for obtaining consistent serial sections from large tissue samples, especially for block faces spanning >1 mm2. We report a method to quantify non-uniformity in resin curing using block hardness measurements from block faces. We identify conditions that lead to non-uniform curing as well as a procedure to monitor the hardness of blocks for a wide range of common epoxy resins used for volume electron microscopy. We also assess cutting repeatability and uniformity by quantifying the transverse and sectional cutting forces during ultrathin sectioning using a sample-mounted force sensor. Our findings indicate that screening and optimizing resin formulations is required to achieve the best repeatability in terms of section thickness. Finally, we explore the encapsulation of irregularly shaped tissue samples in a gelatin matrix prior to epoxy resin embedding to yield more uniform sections.

9.
Materials (Basel) ; 17(10)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38793276

RESUMO

The authors present the results of laboratory tests analysing the impact of selected cutting data and tool geometry on surface quality, chip type and cutting forces in the process of orthogonal turning of sintered cobalt. The selected cutting data are cutting speed and feed rate. During the experiments, the cutting speed was varied in the range of vc = 50-200 m/min and the feed rate in the range of f = 0.077-0.173 mm/rev. In order to measure and acquire cutting force values, a measuring setup was assembled. It consisted of a Kistler 2825A-02 piezoelectric dynamometer with a single-position tool holder, a Kistler 5070 signal amplifier and a PC with DynoWare software (Version 2825A, Kistler Group, Winterthur, Switzerland)). The measured surface quality parameters were Ra and Rz. The components of the cutting forces obtained in the experiment varied depending on the feed rate and cutting speed. The obtained test results will make it possible to determine the optimal parameters for machining and tool geometry in order to reduce the machine operating time and increase the life of the cutting insert during the turning of sintered cobalt, which will contribute to sustainable technology.

10.
Sci Rep ; 14(1): 4687, 2024 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409341

RESUMO

The present study investigated several properties such as friction, hardness, penetration work, and cutting forces in soaps formulated with apple and carrot pomace at varying concentrations of 5%, 10%, and 15%. To gain insights into the molecular-level alterations within the formulated soap samples, they were spectroscopically analyzed using Fourier-transform infrared spectroscopy. The sliding friction analyses revealed that the investigated extrudate additives had no significant impact on the frictional forces of the soaps. However, notable differences were observed in the cutting force, hardness, and penetration work between the control and pomace-added samples. Excluding the control samples, no statistically significant distinctions were found between the cutting force, hardness, and work of penetration of soaps containing apple pomace and carrot pomace. Moreover, the quantity of pomace incorporated did not induce any significant variations in the results. The obtained samples were characterised at the molecular level using FTIR Fourier transform infrared spectroscopy. On the other hand, alterations in band intensities suggested improved molecular packing of the compounds within the samples due to the presence of the additives.


Assuntos
Malus , Sabões , Indústria Alimentícia
11.
Ann Biomed Eng ; 52(4): 846-864, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38135833

RESUMO

Medical needle innovations have utilized rotating motion to enhance tissue-cutting capabilities, reducing cutting force and improving clinical outcomes. This study analyzes the effects of six essential factors on insertion and extraction forces during bone marrow biopsy (BMB) procedures. The study uses Taguchi's L32 orthogonal array and numerically simulates the BMB process using the Lagrangian surface-based method on a three-dimensional (3D) heterogeneous Finite Element (FE) model of the human iliac crest. The study evaluates cutting forces in needle insertion and extraction using uni-directional (360° rotation) and bidirectional (180° clock and anti-clock rotation) bioinspired BMB needles. This work aims to create an AI tool that assists researchers and clinicians in selecting the most suitable and safe design parameters for a bio-inspired barbed biopsy needle. An efficient Graphical User Interface (GUI) has been developed for easy use and seamless interaction with the AI tool. With a remarkable accuracy rate exceeding 98%, the tool's predictions hold significant value in facilitating the development of environmentally conscious biopsy needles. The tool demonstrates significantly higher efficiency compared to Abaqus, rendering it a valuable asset for researchers and clinicians engaged in bio-inspired biopsy needle development.


Assuntos
Medula Óssea , Agulhas , Humanos , Biópsia por Agulha/métodos , Rotação , Fenômenos Mecânicos
12.
Materials (Basel) ; 17(11)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38894039

RESUMO

Current research studies devoted to cutting forces in drilling are oriented toward predictive model development, however, in the case of mechanistic models, the material effect on the drilling process itself is mostly not considered. This research study aims to experimentally analyze how the machined material affects the feed force (Ff) during drilling, alongside developing predictive mathematical-statistical models to understand the main effects and interactions of the considered technological and tool factors on Ff. By conducting experiments involving six factors (feed, cutting speed, drill diameter, point angle, lip relief angle, and helix angle) at five levels, the drilling process of stainless steel AISI1045 and case-hardened steel 16MnCr5 is executed to validate the numerical accuracy of the established prediction models (AdjR = 99.600% for C45 and AdjR = 97.912% for 16MnCr5). The statistical evaluation (ANOVA, RSM, and Lack of Fit) of the data proves that the drilled material affects the Ff value at the level of 17.600% (p < 0.000). The effect of feed represents 44.867% in C45 and 34.087% in 16MnCr5; the cutting speed is significant when machining C45 steel only (9.109%). When machining 16MnCr5 compared to C45 steel, the influence of the point angle (lip relief angle) is lower by 49.198% (by 22.509%). The effect of the helix angle is 163.060% higher when machining 16MnCr5.

13.
Materials (Basel) ; 16(10)2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37241485

RESUMO

In the present study, the impact of cutting-edge microgeometry on the cutting forces in the finish milling of a 7075-aluminium alloy was analysed. The influence of selected values of the rounding radius of cutting edge, and the size of the margin width, on the cutting-force parameters was analysed. Experimental tests were carried out for different cross-sectional values of the cutting layer, changing the feed per tooth and radial infeed parameters. An analysis of the various statistical parameters of the force signal was performed. Experimental mathematical models of the relationship of the force parameters to the radius of the rounded cutting edge and the width of the margin were developed. The cutting forces were found to be most strongly influenced by the width of the margin and, to a minor extent, by the rounding radius of the cutting edge. It was proved that the effect of margin width is linear, and the effect of radius R is nonlinear and nonmonotonic. The minimum cutting force was shown to be for the radius of rounded cutting edge of about 15-20 micrometres. The proposed model is the basis for further work on innovative cutter geometries for aluminium-finishing milling.

14.
Materials (Basel) ; 16(2)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36676404

RESUMO

The machinability of materials is highly affected by their hardness, and it affects power consumption, cutting tool life as well as surface quality while machining the component. This work deals with machining of annealed AISI 4340 alloy steel using a coated carbide tool under a dry environment. The microhardness of annealed and non-annealed workpieces was compared and a significant reduction was found in the microhardness of annealed samples. Microstructure examination of the annealed sample revealed the formation of coarse pearlite which indicated a reduction of hardness and improved ductility. A commercially CVD multilayer (TiN/TiCN/Al2O3/ZrCN) coated cemented carbide cutting tool was employed for turning quenched and tempered structural AISI 4340 alloy steel by varying machining speed, rate of feed, and depth of cut to evaluate the surface quality, machining forces, flank wear, and chip morphology. According to the findings of experiments, the feed rate possesses a high impact on surface finish, followed by cutting speed. The prominent shape of the serrated saw tooth chip was noticed at a higher cutting speed. Machined surface finish and cutting forces during turning is a function of the wear profile of the coated carbide insert. This study proves that annealing is a low-cost and economical process to enhance the machinability of alloy steel.

15.
Heliyon ; 9(4): e14821, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37025868

RESUMO

The latest trends in machining research show that great efforts are being made to simulate machining processes. This paper presents the results of cutting force, feed force and temperatures when the orthogonal cutting of EN AW 6082 T6 alloy. Appropriate material model and damage model were investigated in order to perform finite element simulation with Coupled Eulerian-Lagrangian (CEL) approach. In the next step, simulations were designed based on the input parameters. The size of element in the x-direction (2 µm-10 µm), size of element in y-direction (2 µm-10 µm) and width of the workpiece (2 µm-100 µm) are considered as controllable variables The Genetic Algorithm was used to identify the optimal process parameters by which the minimum value of cutting force error, the minimum value of feed force error and minimum simulation time will be achieved. The optimal combination of the process parameters is size of elements at x-direction 8 µm, y-direction 10 µm and width of workpiece 84 µm. By utilizing the optimal input parameters cutting force error was reduced from 6.5% to 1.07% and feed force error was reduced from 6.15% to 3.12%. The results showed that the optimum size and orientation of the finite element mesh can significantly reduce the error in the prediction of cutting forces and reduce processing simulation time. In addition, it was concluded that with the CEL approach, temperatures in the cutting zone can be successfully predicted.

16.
Artigo em Inglês | MEDLINE | ID: mdl-38012486

RESUMO

The investigation focuses on determining the effects of canola oil-based cutting fluid with three different volume percentages of boric acid additives over the machining forces and surface roughness while turning hardened AISI 1018 mild steel. Experiments were carried out under Taguchi's design of the experiment concept. The minimum quantity lubrication (MQL) technique was followed to minimize the cutting fluid consumption. The homogeneity of the additives dispersed in the fluid has been validated through a zeta potential study. Machining forces and surface roughness were considered as chief machining objectives. The hybrid mathematical model, grey relational analysis (GRA)-artificial neural network (ANN), has been implemented to assess the performance of developed cutting fluid. The results explored that the canola oil cutting fluid with 5 wt% of boric acid additive exhibits lesser cutting forces and surface roughness. The optimal machining parameters identified by the hybrid modeling are 665 rpm of cutting speed, 35 mm/min of feed rate, and 0.3 mm of depth of cut, along with 5 wt% of boric acid composition in cutting fluid. The results explore the 2.677 times improvement in machining objective in comparison with a non-optimal set of parameters. The implementation of hybrid modeling is considered to be a novel attempt to minimize the machining objectives. It has been recorded a negligible error percentage of 0.66% between GRA and ANN prediction.

17.
Materials (Basel) ; 16(13)2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37444843

RESUMO

The aim of this study was to investigate cutting force when milling 40 × 13 stainless steel samples obtained via electron-beam surfacing. The samples were obtained by surfacing the wire made from the martensitic 40 × 13 stainless steel. The microstructure of the samples and the hardness are discussed in the present study. Emphasis is placed on the study of cutting forces when handling the samples. The structure of the samples obtained by electron-beam surfacing consisted of tempered martensite. The average hardness of the samples was similar to the hardness obtained after quenching and tempering the samples-576 HV for horizontally printed workpieces and 525 HV for vertically printed workpieces. High-speed milling, high-efficiency milling, and conventional milling have been proven to be suitable for handling such workpieces. This study shows that an increase in milling width leads to a gradual decrease in specific cutting force. As the milling depth increases, the specific cutting force decreases intensively at first but then more slowly with time. Machining the workpieces made of the martensitic stainless steel and produced by electron-beam surfacing requires the use of purely carbide mills with a diameter of at least 12 mm. Using a high-speed steel as a tool material results in the rapid failure of the tool. The cutting conditions during the investigation allowed for a decrease in the temperature of the cutting edge, cutting force, and the low-rigid end mill bending. Therefore, this study has made it possible to select modes that allow for a reduction in the vibration of the lathe-fixture-tool-part system.

18.
Materials (Basel) ; 16(15)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37570074

RESUMO

The use of high-pressure cooling (HPC) in machining can increase the efficiency and improve process stability through more effective breaking and chip evacuation. Turning tests of the Grade 5 ELI titanium alloy were carried out using cemented carbide tools and taking into account the direction of feeding of the cutting liquid. Measurements of the components of the total cutting force were carried out for feeds in the range f = <0.08; 0.13> mm/rev and two angular settings (i.e., angle α = <30°; 90°> and ß = <0°; 60°>) of the nozzle. The chip breakage coefficient was determined. It was shown that the cutting force values depended on the feed value, and the angle of feeding of the cutting fluid did not significantly affect the values of the cutting forces. Despite the different forms of chips obtained, the applied method of searching for the best conditions was unsuccessful and no significant effect on the values of the chip breaking coefficient Cch was observed. To determine the best nozzle setting, it is useful to determine the working area of the chip breaker. Due to the shape of the chip, the optimal angular setting for the nozzle that supplied the cutting fluid was α = 60° and ß = 30°. In addition, it was observed that the angle of incidence of the cutting fluid jet could affect the chip formation process and support the chip cracking process.

19.
Micromachines (Basel) ; 14(5)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37241584

RESUMO

With the rapid development of photoelectric communication and other fields, the demand for high-precision aspheric mirrors has been increasing. Predicting dynamic cutting forces is vital in selecting machining parameters and also affects the surface quality of the machined surface. This study comprehensively considers the effects of different cutting parameters and workpiece shape parameters on dynamic cutting force. The actual width of cut, depth of cut, and shear angle are modelled while considering the effects of vibration. A dynamic cutting-force model considering the aforementioned factors is then established. Using experimental results, the model accurately predicts the average value of dynamic cutting force under different parameters and the range of fluctuation of dynamic cutting force, with a controlled relative error of about 15%. The influence of workpiece shape and workpiece radial size on dynamic cutting force is also considered. The experimental results show that the greater the surface slope, the more dramatic the dynamic cutting force fluctuations. This lays the foundation for subsequent writing on vibration suppression interpolation algorithms. The influence of the radius of the tool tip on dynamic cutting forces leads to the conclusion that to achieve the goal of reducing the fluctuation of cutting forces, diamond tools with different parameters should be selected for different feed rates. Finally, a new interpolation-point planning algorithm is used to optimize the position of interpolation points in the machining process. This proves the reliability and practicability of the optimization algorithm. The results of this study are of great significance to the processing of high-reflectivity spherical/aspheric surfaces.

20.
Micromachines (Basel) ; 14(8)2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37630126

RESUMO

This comprehensive study investigates the micro-milling of a Mg13Sn alloy, a material of considerable interest in various high-precision applications, such as biomedical implants. The main objective of the study was to explore the optimizations of variable feed per tooth (fz), cutting speed (Vc), and depth of cut (ap) parameters on the key outcomes of the micro-milling process. A unique experimental setup was employed, employing a spindle capable of achieving up to 60,000 revolutions per minute. Additionally, the study leveraged linear slides backed by micro-step motors to facilitate precise axis movements, thereby maintaining a resolution accuracy of 0.1 µm. Cutting forces were accurately captured by a mini dynamometer and subsequently evaluated based on the peak to valley values for Fx (tangential force) and Fy (feed force). The study results revealed a clear and complex interplay between the varied cutting parameters and their subsequent impacts on the cutting forces and surface roughness. An increase in feed rate and depth of cut significantly increased the cutting forces. However, the cutting forces were found to decrease noticeably with the elevation of cutting speed. Intriguingly, the tangential force (Fx) was consistently higher than the feed force (Fy). Simultaneously, the study determined that the surface roughness, denoted by Sa values, increased in direct proportion to the feed rate. It was also found that the Sa surface roughness values decreased with the increase in cutting speed. This study recommends a parameter combination of fz = 5 µm/tooth feed rate, Vc = 62.8 m/min cutting speed, and ap = 400 µm depth of cut to maintain a Sa surface roughness value of less than 1 µm while ensuring an optimal material removal rate and machining time. The results derived from this study offer vital insights into the micro-milling of Mg13Sn alloys and contribute to the current body of knowledge on the topic.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa