Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
J Pathol ; 264(1): 90-100, 2024 09.
Artigo em Inglês | MEDLINE | ID: mdl-39022850

RESUMO

Replication stress (RS) is a key trait of cancer cells, and a potential actionable target in cancer treatment. Accurate methods to measure RS in tumour samples are currently lacking. DNA fibre analysis has been used as a common technique to measure RS in cell lines. Here, we investigated DNA fibre analysis on fresh breast cancer specimens and correlated DNA replication kinetics to known RS markers and genomic alterations. Fresh, treatment-naïve primary breast cancer samples (n = 74) were subjected to ex vivo DNA fibre analysis to measure DNA replication kinetics. Tumour cell proliferation was confirmed by EdU incorporation and cytokeratin AE1/AE3 (CK) staining. The RS markers phospho-S33-RPA and γH2AX and the RS-inducing proto-oncogenes Cyclin E1 and c-Myc were analysed by immunohistochemistry. Copy number variations (CNVs) were assessed from genome-wide single nucleotide polymorphism (SNP) arrays. We found that the majority of proliferating (EdU-positive) cells in each sample were CK-positive and therefore considered to be tumour cells. DNA fibre lengths varied largely in most tumour samples. The median DNA fibre length showed a significant inverse correlation with pRPA expression (r = -0.29, p = 0.033) but was not correlated with Cyclin E1 or c-Myc expression and global CNVs in this study. Nuclear Cyclin E1 expression showed a positive correlation with pRPA levels (r = 0.481, p < 0.0001), while cytoplasmic Cyclin E1 expression exhibited an inverse association with pRPA expression (r = -0.353, p = 0.002) and a positive association with global CNVs (r = 0.318, p = 0.016). In conclusion, DNA fibre analysis performed with fresh primary breast cancer samples is feasible. Fibre lengths were associated with pRPA expression. Cyclin E1 expression was associated with pRPA and the percentage of CNVs. © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Neoplasias da Mama , Ciclina E , Replicação do DNA , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Feminino , Ciclina E/genética , Ciclina E/metabolismo , Replicação do DNA/genética , Polimorfismo de Nucleotídeo Único , Proliferação de Células , Variações do Número de Cópias de DNA , Pessoa de Meia-Idade , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Idoso , DNA de Neoplasias/genética , DNA de Neoplasias/metabolismo , Adulto
2.
Mol Carcinog ; 63(10): 1907-1921, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38923703

RESUMO

A-kinase anchoring protein 95 (AKAP95) functions as a scaffold for protein kinase A. Prior work by our group has shown that AKAP95, in coordination with Connexin 43 (Cx43), modulates the expression of cyclin D and E proteins, thus affecting the cell cycle progression in lung cancer cells. In the current study, we confirmed that AKAP95 forms a complex with Cx43. Moreover, it associates with cyclins D1 and E1 during the G1 phase, leading to the formation of protein complexes that subsequently translocate to the nucleus. These findings indicate that AKAP95 might facilitate the nuclear transport of cyclins D1 and E1. Throughout this process, AKAP95 and Cx43 collectively regulate the expression of cyclin D, phosphorylate cyclin E1 proteins, and target their specific ubiquitin ligases, ultimately impacting cell cycle progression.


Assuntos
Proteínas de Ancoragem à Quinase A , Conexina 43 , Ciclina E , Neoplasias Pulmonares , Proteínas Oncogênicas , Ubiquitinação , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Proteínas de Ancoragem à Quinase A/metabolismo , Proteínas de Ancoragem à Quinase A/genética , Ciclina E/metabolismo , Ciclina E/genética , Proteínas Oncogênicas/metabolismo , Proteínas Oncogênicas/genética , Conexina 43/metabolismo , Conexina 43/genética , Linhagem Celular Tumoral , Ciclina D1/metabolismo , Ciclina D1/genética , Fase G1 , Proteólise , Regulação Neoplásica da Expressão Gênica , Células A549 , Fosforilação
3.
Ann Diagn Pathol ; 72: 152320, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38703529

RESUMO

CIC-rearranged sarcoma (CRS) is a group of high-grade undifferentiated small round cell sarcomas examined as a separate entity in the current WHO classification; since it shows more aggressive clinical behavior and distinct morphological and molecular features compared to Ewing sarcoma (ES). As CCNE1 expression is associated with tumor growth in CIC::DUX4 sarcomas, we aimed to demonstrate the value of cyclin E1 expression in CRS. Cyclin E1 immunohistochemistry and break-apart FISH for EWSR1 and CIC gene rearrangements were performed on 3-mm tissue microarrays composed of 40 small round cell tumors. Five cases were classified as CRS, whereas 22 were ES and 13 were unclassified (EWSR1-/CIC-). Among all three diagnostic groups, we found cyclin E1 expression level to be higher in CRS (80 %) and unclassified groups (61.5 %) compared to ES (4.5 %, p < 0.001). In addition, high cyclin E1 expression levels were associated with higher mean age at diagnosis, presence of atypical histology and myxoid stroma, low CD99 expression, and presence of metastasis at diagnosis. The sensitivity and specificity of high cyclin E1 expression in detecting non-ES cases were 95.5 % and 66.7 %, respectively. However, the correlation between cyclin E1 expression level and survival was not statistically significant. This is the first study that shows cyclin E1 immunohistochemical expression in EWSR1-negative undifferentiated small cell sarcomas, particularly CRS.


Assuntos
Biomarcadores Tumorais , Ciclina E , Rearranjo Gênico , Proteínas Oncogênicas , Proteínas Repressoras , Humanos , Masculino , Proteínas Oncogênicas/metabolismo , Proteínas Oncogênicas/genética , Feminino , Adulto , Ciclina E/metabolismo , Ciclina E/genética , Pessoa de Meia-Idade , Adolescente , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Adulto Jovem , Criança , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Imuno-Histoquímica/métodos , Sarcoma de Ewing/metabolismo , Sarcoma de Ewing/patologia , Sarcoma de Ewing/genética , Sarcoma/patologia , Sarcoma/metabolismo , Sarcoma/genética , Sarcoma/diagnóstico , Hibridização in Situ Fluorescente/métodos , Idoso , Pré-Escolar , Proteína EWS de Ligação a RNA/genética , Proteína EWS de Ligação a RNA/metabolismo , Sarcoma de Células Pequenas/metabolismo , Sarcoma de Células Pequenas/genética , Sarcoma de Células Pequenas/patologia , Sarcoma de Células Pequenas/diagnóstico
4.
Cancer ; 129(5): 697-713, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36572991

RESUMO

BACKGROUND: Cyclin E1 (CCNE1) is a potential predictive marker and therapeutic target in tubo-ovarian high-grade serous carcinoma (HGSC). Smaller studies have revealed unfavorable associations for CCNE1 amplification and CCNE1 overexpression with survival, but to date no large-scale, histotype-specific validation has been performed. The hypothesis was that high-level amplification of CCNE1 and CCNE1 overexpression, as well as a combination of the two, are linked to shorter overall survival in HGSC. METHODS: Within the Ovarian Tumor Tissue Analysis consortium, amplification status and protein level in 3029 HGSC cases and mRNA expression in 2419 samples were investigated. RESULTS: High-level amplification (>8 copies by chromogenic in situ hybridization) was found in 8.6% of HGSC and overexpression (>60% with at least 5% demonstrating strong intensity by immunohistochemistry) was found in 22.4%. CCNE1 high-level amplification and overexpression both were linked to shorter overall survival in multivariate survival analysis adjusted for age and stage, with hazard stratification by study (hazard ratio [HR], 1.26; 95% CI, 1.08-1.47, p = .034, and HR, 1.18; 95% CI, 1.05-1.32, p = .015, respectively). This was also true for cases with combined high-level amplification/overexpression (HR, 1.26; 95% CI, 1.09-1.47, p = .033). CCNE1 mRNA expression was not associated with overall survival (HR, 1.00 per 1-SD increase; 95% CI, 0.94-1.06; p = .58). CCNE1 high-level amplification is mutually exclusive with the presence of germline BRCA1/2 pathogenic variants and shows an inverse association to RB1 loss. CONCLUSION: This study provides large-scale validation that CCNE1 high-level amplification is associated with shorter survival, supporting its utility as a prognostic biomarker in HGSC.


Assuntos
Carcinoma , Cistadenocarcinoma Seroso , Neoplasias Ovarianas , Feminino , Humanos , Neoplasias Ovarianas/patologia , Fatores de Transcrição/genética , RNA Mensageiro , Cistadenocarcinoma Seroso/genética , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/uso terapêutico , Ciclina E/genética
5.
Cell Mol Life Sci ; 79(8): 443, 2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35867177

RESUMO

MiR-181 expression levels increased in hepatocellular carcinoma (HCC) compared to non-cancerous tissues. MiR-181 has been widely reported as a possible driver of tumourigenesis but also acts as a tumour suppressor. In addition, the miR-181 family regulates the development and function of immune and vascular cells, which play vital roles in the progression of tumours. More complicatedly, many genes have been identified as miR-181 targets to mediate the effects of miR-181. However, the role of miR-181 in the development of primary tumours remains largely unexplored. We aimed to examine the function of miR-181 and its vital mediators in the progression of diethylnitrosamine-induced primary liver cancers in mice. The size of liver tumours was significantly reduced by 90% in global (GKO) or liver-specific (LKO) 181ab1 knockout mice but not in hematopoietic and endothelial lineage-specific knockout mice, compared to WT mice. In addition, the number of tumours was significantly reduced by 50% in GKO mice. Whole-genome RNA-seq analysis and immunohistochemistry showed that epithelial-mesenchymal transition was partially reversed in GKO tumours compared to WT tumours. The expression of CBX7, a confirmed miR-181 target, was up-regulated in GKO compared to WT tumours. Stable CBX7 expression was achieved with an AAV/Transposase Hybrid-Vector System and up-regulated CBX7 expression inhibited liver tumour progression in WT mice. Hepatic CBX7 deletion restored the progression of LKO liver tumours. MiR-181a expression was the lowest and CBX7 expression the highest in iClust2 and 3 subclasses of human HCC compared to iClust1. Gene expression profiles of GKO tumours overlapped with low-proliferative peri-portal-type HCCs. Liver-specific loss of miR-181ab1 inhibited primary liver tumour progression via up-regulating CBX7 expression, but tumour induction requires both hepatic and non-hepatic miR-181. Also, miR-181ab1-deficient liver tumours may resemble low-proliferative periportal-type human HCC. miR-181 was increased with liver tumour growth. More miR-181, darker colour and higher shape. CBX7 was very low in pericentral hepatocytes, increased in early liver tumours, but reduced in advanced liver tumours. Its levels were maintained in miR-181 KO liver tumours. In tumours (T), brown (darker is more) represents miR-181, the blue circle (thicker is more) represents CBX7.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Animais , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/metabolismo , Regulação para Cima/genética
6.
Pak J Med Sci ; 39(3): 835-842, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37250533

RESUMO

Background & Objectives: Serous ovarian carcinoma (SOC) is characterized by extreme genomic instability, chromosomal rearrangements and copy number variations (CNVs) leading to the development of early metastasis and chemo-resistance. The present study was designed to observe the role of CNVs of Cyclin E1 (CCNE1) and Epithelial cell transforming sequence- 2 (ECT2) genes and their encoded proteins in predicting the chemotherapeutic response in SOC patients. Methods: This observational analytical study was conducted at University of Health Sciences, Lahore, Pakistan from December 2019 till June 2022.The study included twenty-five SOC patients with resectable ovarian tumors and twenty-five control subjects. The patients were followed-up for six months for their response to chemotherapy. The CNVs in CCNE1 and ECT-2 genes were determined by real time PCR while serum levels of encoded proteins were determined in controls and cases, before and after six months of treatment, through ELISA. The response to chemotherapy was categorized as sensitive or resistant based on serum CA-125 levels and radiological scans. Results: The copy number variations in CCNE1 and ECT2 genes showed association with the clinic-pathological characteristics and chemotherapy response. Statistically significant difference was found between the mean pre-chemotherapy protein levels of CCNE1 in cases than controls (p-value <0.001) and between the mean pre and post-chemotherapy protein levels of CCNE1 and ECT2 (p-value <0.001) in SOC patients. Conclusion: The copy number variations of CCNE1 and ECT2 genes and their protein expression are positively associated with chemotherapeutic response in SOC patients.

7.
EMBO Rep ; 21(12): e51042, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33043604

RESUMO

Oral squamous cell carcinoma (OSCC) is the sixth most common cancer with a 5-year overall survival rate of 50%. Thus, there is a critical need to understand the disease process, and to identify improved therapeutic strategies. Previously, we found the long non-coding RNA (lncRNA) EGFR long non-coding downstream RNA (ELDR) induced in a mouse tongue cancer model; however, its functional role in human oral cancer remained unknown. Here, we show that ELDR is highly expressed in OSCC patient samples and in cell lines. Overexpression of ELDR in normal non-tumorigenic oral keratinocytes induces cell proliferation, colony formation, and PCNA expression. We also show that ELDR depletion reduces OSCC cell proliferation and PCNA expression. Proteomics data identifies the RNA binding protein ILF3 as an interacting partner of ELDR. We further show that the ELDR-ILF3 axis regulates Cyclin E1 expression and phosphorylation of the retinoblastoma (RB) protein. Intratumoral injection of ELDR-specific siRNA reduces OSCC and PDX tumor growth in mice. These findings provide molecular insight into the role of ELDR in oral cancer and demonstrate that targeting ELDR has promising therapeutic potential.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Bucais , RNA Longo não Codificante , Animais , Carcinoma de Células Escamosas/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Humanos , Camundongos , Neoplasias Bucais/genética , RNA Longo não Codificante/genética
8.
Int J Med Sci ; 19(1): 47-64, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34975298

RESUMO

Background: Clear cell renal cell carcinoma (ccRCC) is a cell metabolic disease with high metastasis rate and poor prognosis. Our previous studies demonstrate that glucose-6-phosphate dehydrogenase (G6PD), the first and rate-limiting enzyme of the pentose phosphate pathway, is highly expressed in ccRCC and predicts poor outcomes of ccRCC patients. The aims of this study were to confirm the oncogenic role of G6PD in ccRCC and unravels novel mechanisms involving Cyclin E1 and MMP9 in G6PD-mediated ccRCC progression. Methods: Real-time RT-PCR, Western blot and immunohistochemistry were used to determine the expression patterns of G6PD, Cyclin E1 and MMP9 in ccRCC. TCGA dataset mining was used to identify Cyclin E1 and MMP9 correlations with G6PD expression, relationships between clinicopathological characteristics of ccRCC and the genes of interest, as well as the prognosis of ccRCC patients. The role of G6PD in ccRCC progression and the regulatory effect of G6PD on Cyclin E1 and MMP9 expression were investigated by using a series of cytological function assays in vitro. To verify this mechanism in vivo, xenografted mice models were established. Results: G6PD, Cyclin E1 and MMP9 were overexpressed and positively correlated in ccRCC, and they were associated with poor prognosis of ccRCC patients. Moreover, G6PD changed cell cycle dynamics, facilitated cells proliferation, promoted migration in vitro, and enhanced ccRCC development in vivo, more likely through enhancing Cyclin E1 and MMP9 expression. Conclusion: These findings present G6PD, Cyclin E1 and MMP9, which contribute to ccRCC progression, as novel biomarkers and potential therapeutic targets for ccRCC treatment.


Assuntos
Carcinoma de Células Renais/genética , Ciclina E/genética , Regulação Neoplásica da Expressão Gênica , Glucosefosfato Desidrogenase/fisiologia , Neoplasias Renais/genética , Metaloproteinase 9 da Matriz/genética , Proteínas Oncogênicas/genética , Regulação para Cima , Animais , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Ciclina E/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Feminino , Humanos , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Proteínas Oncogênicas/metabolismo
9.
J Cell Physiol ; 236(8): 5757-5770, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33438217

RESUMO

Nephroblastoma, a pediatric kidney cancer, caused by pluripotent embryonic renal precursors. Long noncoding RNAs (lncRNAs) are commonly abnormal expressed in many cancers. In the present study, we fousced on one newly discrovered lncRNA, MYLK Antisense RNA 1 (MYLK-AS1), and its functional role in proliferation and cycle distribution of nephroblastoma cells. Micorarray-based analysis revealed the highly expressed Cyclin E1 (CCNE1) and MYLK-AS1 in nephroblastoma. After nephroblastoma tissue sample collection, RT-qPCR confirmed the upregulated expression of MYLK-AS1 and CCNE1 in nephroblastoma tissues and cells. Kaplan-Meier curve exhibited that patients with elevated CCNE1 had lower overall survival rate in follow-up study. RNA binding protein immunoprecipitation, chromatin immunoprecipitation, and dual-luciferase reporter gene assay were employed to determine the relationship among MYLK-AS1, TCF7L2, and CCNE1, which validated that transcription factor 7-like 2 (TCF7L2) could specifically bind to MYLK-AS1 and TCF7L2 could positively promote CCNE1. After gain- and loss-of function assays, the conclusion that silencing of MYLK-AS1 could inhibit expression of CCNE1 through the transcription factor TCF7L2 to regulate the cell proliferation and cell cycle distribution of nephroblastoma cells was obtained. Subsequently, the subcutaneous tumor formation ability of nephroblastoma cell in nude mice was observed and the silencing of MYLK-AS1 exerts suppressive role in the tumorigenic ability of nephroblastoma cells in vivo. Taken together, MYLK-AS1 constitutes a promising biomarker for the early detection and treatment of nephroblastoma.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Ciclina E/genética , Quinase de Cadeia Leve de Miosina/genética , Proteínas Oncogênicas/genética , Proteína 2 Semelhante ao Fator 7 de Transcrição/genética , Tumor de Wilms/genética , Adolescente , Adulto , Animais , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação para Baixo , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Masculino , Camundongos Nus , Pessoa de Meia-Idade , RNA Longo não Codificante/genética , Adulto Jovem
10.
Cancer Immunol Immunother ; 70(10): 2991-3000, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33745032

RESUMO

BACKGROUND: Checkpoint kinase 1 (CHK1) has dual roles in both the DNA damage response and in the innate immune response to genotoxic stress. The combination of CHK1 inhibition and immune checkpoint blockade has the potential to enhance anti-tumoral T-cell activation. METHODS: This was an open-label phase 1 study evaluating the CHK1 inhibitor prexasertib and the anti-PD-L1 antibody LY3300054. After a lead-in of LY3300054 (Arm A), prexasertib (Arm B) or the combination (Arm C), both agents were administered intravenously at their respective recommended phase 2 doses (RP2Ds) on days 1 and 15 of a 28-day cycle. Flow cytometry of peripheral blood was performed before and during treatment to analyze effects on immune cell populations, with a focus on T cell subsets and activation. Plasma cytokines and chemokines were analyzed using the Luminex platform. RESULTS: Among seventeen patients enrolled, the combination was tolerable at the monotherapy RP2Ds, 105 mg/m2 prexasertib and 700 mg LY3300054. Dose-limiting toxicities included one episode each of febrile neutropenia (Arm C) and grade 4 neutropenia lasting > 5 days (Arm B). One patient had immune-related AST/ALT elevation after 12 cycles. Three patients with CCNE1-amplified, high-grade serous ovarian cancer (HGSOC) achieved partial response (PR), 2 lasting > 12 months; a fourth such patient maintained stable disease > 12 months. Analysis of peripheral blood demonstrated evidence of CD8 + T-cell activation in response to treatment. CONCLUSIONS: Prexasertib in combination with PD-L1 blockade was tolerable and demonstrated preliminary activity in CCNE1-amplified HGSOC with evidence of cytotoxic T-cell activation in patient blood samples. TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT03495323. Registered April 12, 2018.


Assuntos
Antineoplásicos/uso terapêutico , Cistadenocarcinoma Seroso/tratamento farmacológico , Neoplasias Ovarianas/tratamento farmacológico , Pirazinas/uso terapêutico , Pirazóis/uso terapêutico , Adulto , Idoso , Antineoplásicos/farmacologia , Cistadenocarcinoma Seroso/patologia , Feminino , Humanos , Pessoa de Meia-Idade , Neoplasias Ovarianas/patologia , Pirazinas/farmacologia , Pirazóis/farmacologia
11.
BMC Cancer ; 21(1): 39, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33413211

RESUMO

BACKGROUND: To improve the efficiency of early diagnosis systems for cervical cancer, the use of cellular and viral markers for identifying precancerous lesions with a greater probability to progress to cancer has been proposed. Several cellular proteins and markers of oxidative DNA damage have been suggested as possible biomarkers of cervical carcinogenesis; however, they have not been evaluated together. In this study, we analyzed the expression of the cellular markers p16INK4a, Ki-67, CyclinE1, TOP2A/MCM2, and telomerase, as well as the DNA oxidative damage markers ROS and 8-OHdG. The analyses were performed in liquid-based cervical cytology samples or biopsies with premalignant lesions or cervical cancer diagnosis, with the purpose of selecting a panel of biomarkers that allow the identification of precursor lesions with greater risk of progression to cervical cancer. METHODS: We analyzed 1485 liquid-based cytology samples, including 239 non-squamous intraepithelial lesions (NSIL), 901 low-grade squamous intraepithelial lesions (LSIL), 54 high-grade squamous intraepithelial lesions (HSIL), and 291 cervical cancers (CC). The biomarkers were analyzed by immunocytochemistry and Human Papilloma Virus (HPV) genotyping with the INNO-LiPA genotyping Extra kit. RESULTS: We found that all tested cellular biomarkers were overexpressed in samples with high risk-HPV infection, and the expression levels increased with the severity of the lesion. TOP2A/MCM2 was the best biomarker for discriminating between LSIL and HSIL, followed by p16INK4a and cyclinE1. Statistical analysis showed that TOP2A/MCM2 provided the largest explanation of HSIL and CC cases (93.8%), followed by p16INK4a (91%), cyclin E1 (91%), Ki-67 (89.3%), and telomerase (88.9%). CONCLUSIONS: We propose that the detection of TOP2A/MCM2, p16INK4a and cyclin E1 expression levels is useful as a panel of biomarkers that allow identification of cervical lesions with a higher risk for progression to CC with high sensitivity and precision; this can be done inexpensively, in a single and non-invasive liquid-based cytology sample.


Assuntos
Ciclina E/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , DNA Topoisomerases Tipo II/metabolismo , Biópsia Líquida/métodos , Componente 2 do Complexo de Manutenção de Minicromossomo/metabolismo , Proteínas Oncogênicas/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Lesões Pré-Cancerosas/patologia , Neoplasias do Colo do Útero/patologia , Adulto , Idoso , Biomarcadores Tumorais/metabolismo , Citodiagnóstico/métodos , Progressão da Doença , Feminino , Seguimentos , Humanos , Pessoa de Meia-Idade , Papillomaviridae/isolamento & purificação , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/virologia , Lesões Pré-Cancerosas/metabolismo , Lesões Pré-Cancerosas/cirurgia , Lesões Pré-Cancerosas/virologia , Prognóstico , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/cirurgia , Neoplasias do Colo do Útero/virologia , Displasia do Colo do Útero/metabolismo , Displasia do Colo do Útero/patologia , Displasia do Colo do Útero/cirurgia , Displasia do Colo do Útero/virologia
12.
Cell Biol Int ; 45(11): 2347-2356, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34314079

RESUMO

Tazarotene-induced gene 1 (TIG1) is considered to be a tumor suppressor gene that is highly expressed in normal or well-differentiated colon tissues, while downregulation of TIG1 expression occurs in poorly differentiated colorectal cancer (CRC) tissues. However, it is still unclear how TIG1 regulates the tumorigenesis of CRC. Polo-like kinases (Plks) are believed to play an important role in regulating the cell cycle. The performance of PLK2 in CRC is negatively correlated with the differentiation status of CRC tissues. Here, we found that PLK2 can induce the growth of CRC cells and that TIG1 can prevent PLK2 from promoting the proliferation of CRC cells. We also found that the expression of PLK2 in CRC cells was associated with low levels of Fbxw7 protein and increased expression of cyclin E1. When TIG1 was coexpressed with PLK2, the changes in Fbxw7/cyclin E1 levels induced by PLK2 were reversed. In contrast, silencing TIG1 promoted the proliferation of CRC, and when PLK2 was also silenced, the proliferation of CRC cells induced by TIG1 silencing was significantly inhibited. The above research results suggest that TIG1 can regulate the tumorigenesis of CRC by regulating the activity of PLK2.


Assuntos
Neoplasias Colorretais/genética , Proteínas de Membrana/genética , Proteínas Serina-Treonina Quinases/metabolismo , Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Divisão Celular/genética , Proliferação de Células/genética , Neoplasias Colorretais/metabolismo , Ciclina E/genética , Proteína 7 com Repetições F-Box-WD/genética , Inativação Gênica/fisiologia , Células HCT116 , Humanos , Proteínas de Membrana/metabolismo , Proteínas Oncogênicas/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Quinase 1 Polo-Like
13.
Int J Mol Sci ; 22(11)2021 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-34070839

RESUMO

BACKGROUND: Ovarian clear cell carcinoma (OCCC) is resistant to platinum chemotherapy and is characterized by poor prognosis. Today, the use of poly (ADP-ribose) polymerase (PARP) inhibitor, which is based on synthetic lethality strategy and characterized by cancer selectivity, is widely used for new types of molecular-targeted treatment of relapsed platinum-sensitive ovarian cancer. However, it is less effective against OCCC. METHODS: We conducted siRNA screening to identify synthetic lethal candidates for the ARID1A mutation; as a result, we identified Cyclin-E1 (CCNE1) as a potential target that affects cell viability. To further clarify the effects of CCNE1, human OCCC cell lines, namely TOV-21G and KOC7c (ARID1A mutant lines), and RMG-I and ES2 (ARID1A wild type lines) were transfected with siRNA targeting CCNE1 or a control vector. RESULTS: Loss of CCNE1 reduced proliferation of the TOV-21G and KOC7c cells but not of the RMG-I and ES2 cells. Furthermore, in vivo interference of CCNE1 effectively inhibited tumor cell proliferation in a xenograft mouse model. CONCLUSION: This study showed for the first time that CCNE1 is a synthetic lethal target gene to ARID1A-mutated OCCC. Targeting this gene may represent a putative, novel, anticancer strategy in OCCC treatment.


Assuntos
Adenocarcinoma de Células Claras/genética , Ciclina E/genética , Proteínas de Ligação a DNA/genética , Proteínas Oncogênicas/genética , Neoplasias Ovarianas/genética , Mutações Sintéticas Letais , Fatores de Transcrição/genética , Adenocarcinoma de Células Claras/metabolismo , Adenocarcinoma de Células Claras/patologia , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cisplatino/farmacologia , Ciclina E/antagonistas & inibidores , Ciclina E/metabolismo , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Camundongos Nus , Terapia de Alvo Molecular , Proteínas Oncogênicas/antagonistas & inibidores , Proteínas Oncogênicas/metabolismo , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
14.
J Biol Chem ; 294(51): 19451-19464, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31578284

RESUMO

JARID2 is a noncatalytic member of the polycomb repressive complex 2 (PRC2) which methylates of histone 3 lysine 27 (H3K27). In this work, we show that JARID2 and the PRC2 complex regulate the cell cycle in skeletal muscle cells to control proliferation and mitotic exit. We found that the stable depletion of JARID2 leads to increased proliferation and cell accumulation in S phase. The regulation of the cell cycle by JARID2 is mediated by direct repression of both cyclin D1 and cyclin E1, both of which are targets of PRC2-mediated H3K27 methylation. Intriguingly, we also find that the retinoblastoma protein (RB1) is a direct target of JARID2 and the PRC2 complex. The depletion of JARID2 is not sufficient to activate RB1. However, the ectopic expression of RB1 can suppress cyclin D1 expression in JARID2-depleted cells. Transient depletion of JARID2 in skeletal muscle cells leads to a transient up-regulation of cyclin D1 that is quickly suppressed with no resulting effect on proliferation, Taken together, we show that JARID2 and the PRC2 complex regulate skeletal muscle proliferation in a precise manner that involves the repression of cyclin D1, thus restraining proliferation and repressing RB1, which is required for mitotic exit and terminal differentiation.


Assuntos
Ciclo Celular , Histonas/metabolismo , Músculo Esquelético/citologia , Complexo Repressor Polycomb 2/metabolismo , Animais , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Sobrevivência Celular , Ciclina D1/metabolismo , Ciclina E/metabolismo , Metilação de DNA , Camundongos , Mitose , Mioblastos/citologia , Proteínas Oncogênicas/metabolismo , Proteínas de Ligação a Retinoblastoma/metabolismo
15.
Biochem Biophys Res Commun ; 530(1): 230-234, 2020 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-32828291

RESUMO

JQ1 disrupts the binding of bromodomain and extra-terminal (BET) family of proteins to acetylated histones, modulates the expression of various genes, and inhibits the proliferation of cancer cells. We established two JQ1-resistant sublines from human colorectal cancer HCT116 cells. These resistant cells showed an 8- to 9-fold higher resistance to JQ1, and a 2- to 4-fold higher resistance to various anti-cancer agents, such as doxorubicin, etoposide, mitoxantrone, SN-38, cisplatin, and methotrexate than the parental HCT116 cells. The JQ1-resistant cells expressed higher levels of TRAF2 and NCK-interacting protein kinase (TNIK), cyclin D1 (CCND1), cyclin E1 (CCNE1), and their corresponding mRNAs than the parental cells. TNIK is a regulator of Wnt/ß-catenin signaling and is known to transactivate CCND1. Transient transfection of HCT116 cells with a TNIK expression plasmid resulted in the upregulation of cyclin D1, cyclin E1, and their corresponding mRNAs, as well as an increase in CCNE1 promoter activity. Furthermore, luciferase assay revealed that the JQ1-resistant cells showed high CCNE1 promoter activity. These results suggest that TNIK also transactivates CCNE1. Three stable TNIK transfectant clones of HEK293 cells expressed 1.5- to 2-fold higher levels of TNIK, cyclin D1, and cyclin E1 than the parental cells. The 293/TNIK-6 cells, which expressed the highest level of TNIK among the transfectants, showed a 2.3-fold higher resistance to JQ1 than the parental cells. These results suggest the possible involvement of TNIK in cellular resistance to JQ1.


Assuntos
Antineoplásicos/farmacologia , Azepinas/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Proteínas Serina-Treonina Quinases/genética , Triazóis/farmacologia , Regulação para Cima , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HCT116 , Células HEK293 , Humanos , Regulação para Cima/efeitos dos fármacos
16.
Biochem Biophys Res Commun ; 527(2): 525-531, 2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32423798

RESUMO

Soft tissue leiomyosarcoma (STLMS) is a major histological subtype of adult sarcoma. Although the molecular mechanisms ofLMS have been gradually revealed, no valid therapeutic targets have been identified. In this study, we performed a systematic screening to explore relapse-associated genes in STLMS, using data from The Cancer Genome Atlas-Sarcoma (TCGA-SARC). Then, we investigated the functional role of the gene with the best relapse-prediction value in STLMS by both in-vitro and in-vivo studies. Results showed that AMH and PLA2G10 were two genes with area under curve (AUC) values higher than 0.80 in ROC analysis when detecting relapse. Patients in the high AMH or PLA2G10 expression group had significantly worse relapse-free survival (RFS) compared to the respective low expression group. PLA2G10 was highly expressed in STLMS, but not in other sarcoma subtypes. PLA2G10 overexpression promoted SK-LMS-1 cell growth and G1/S transition, while PLA2G10 knockdown slowed the growth and resulted in G1 phase arrest. PLA2G10 overexpression markedly increased the expression of CDK2 and cyclin E1, but did not influence CDK4, CDK6, cyclin D1, CDK1 or cyclin A expression. PLA2G10 overexpression enhanced SK-LMS-1 cell-derived xenograft tumor growth in nude mice, while PLA2G10 inhibition slowed the growth. Mutation of two critical catalyzing amino acid residues (p.H88A and p.D89A) abrogated the capability of PLA2G10 to catalyze the production of arachidonic acid (AA), and also canceled the regulatory effects on cyclin E1 and CDK2 expression, as well as G1/S transition. In conclusion, PLA2G10 was a specific relapse-associated gene in STLMS. It facilitated the cell-cycle progression of STLMS cells at least by elevating the expression of cyclin E1 and CDK2. The hydrolytic activity was crucial for its oncogenic properties.


Assuntos
Ciclina E/genética , Quinase 2 Dependente de Ciclina/genética , Regulação Neoplásica da Expressão Gênica , Fosfolipases A2 do Grupo X/genética , Leiomiossarcoma/genética , Proteínas Oncogênicas/genética , Animais , Ciclo Celular , Linhagem Celular Tumoral , Feminino , Humanos , Leiomiossarcoma/patologia , Camundongos Endogâmicos BALB C , Camundongos Nus , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia
17.
Int Ophthalmol ; 40(2): 343-350, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31571090

RESUMO

PURPOSE: To investigate the overexpression of genes in sebaceous gland carcinoma (SGC) of the eyelid compared to sebaceous adenoma of the eyelid in order to elucidate the molecular mechanism underlying pathogenesis. METHODS: We performed histopathological examination of eyelid tissues surgically removed from four patients diagnosed with SGC (cases 1-3) and sebaceous adenoma (case 4) of the eyelid. Next, we performed global gene expression analysis of surgical tissue samples using a GeneChip® system and the Ingenuity Pathways Knowledge Base. The results of the GeneChip® analysis were explored with quantitative real-time polymerase chain reaction (qRT-PCR) analysis. RESULTS: In the SGC samples, we found that 211, 199, and 199 genes, respectively, showed ≥ 2.0-fold higher expression than those in the sebaceous adenoma sample (case 4); 194 genes were common to all three SGC samples. For the 194 genes with upregulated expression, functional category analysis showed that SGC of the eyelid employed a unique gene network, including cyclin-dependent kinase inhibitor 2A (CDKN2A), cyclin-dependent kinase 1 (CDK1), and cyclin E1 (CCNE1), which are related to cell cycle progression, incidence of tumor, and cell viability. Furthermore, qRT-PCR analysis showed that the expression levels of CDKN2A, CDK1, and CCNE1 were significantly upregulated in all SGC cases compared to those in the sebaceous adenoma case. These data were similar to the results of microarray analysis. CONCLUSION: Overexpression of cell cycle-related genes CDKN2A, CDK1, CCNE1, and their gene network may help elucidate the pathogenic pathway of SGC of the eyelid at the molecular level.


Assuntos
Adenocarcinoma Sebáceo/genética , Proteína Quinase CDC2/genética , Ciclina E/genética , Inibidor p16 de Quinase Dependente de Ciclina/genética , Neoplasias Palpebrais/genética , Regulação Neoplásica da Expressão Gênica , Proteínas Oncogênicas/genética , Neoplasias das Glândulas Sebáceas/genética , Adenocarcinoma Sebáceo/metabolismo , Adenocarcinoma Sebáceo/patologia , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/biossíntese , Biomarcadores Tumorais/genética , Proteína Quinase CDC2/biossíntese , Ciclina E/biossíntese , Inibidor p16 de Quinase Dependente de Ciclina/biossíntese , Neoplasias Palpebrais/metabolismo , Neoplasias Palpebrais/patologia , Feminino , Humanos , Imuno-Histoquímica , Masculino , Proteínas Oncogênicas/biossíntese , RNA Neoplásico/genética , Neoplasias das Glândulas Sebáceas/metabolismo , Neoplasias das Glândulas Sebáceas/patologia , Glândulas Sebáceas/metabolismo , Glândulas Sebáceas/patologia
18.
Mol Carcinog ; 58(8): 1502-1511, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31045274

RESUMO

Glioblastoma (GBM) is one of the major causes of brain cancer-related mortality worldwide. Temozolomide (TMZ) is an important agent against GBM. Acquired TMZ-resistance severely limits the chemotherapeutic effect and leads to poor GBM patient survival. To study the underlying mechanism of drug resistance, two TMZ resistant GBM cell lines, A172 and U87, were generated. In this study, the TMZ resistant cells have less apoptosis and cell-cycle change in response to the TMZ treatment. Western blot results revealed that cyclin E1 was upregulation in TMZ resistant cells. Inhibition or depletion of cyclin E1 re-sensitized the resistant cells to the TMZ treatment, which indicated the induction of cyclin E1 is the cause of TMZ resistance in GBM cells. Furthermore, we also found the expression of cyclin E1 stabilized the expression of Mcl-1, which contributes to the TMZ resistance in GBM cells. Finally, our in vivo xenograft data showed that the combination of flavopiridol, a cyclin E1/CDK2 inhibitor, overcomes the TMZ resistant by inducing higher apoptosis. Overall, our data provided a rationale to overcome the TMZ resistant in GBM treatment by inhibiting the cyclin E1 activity.


Assuntos
Antineoplásicos Alquilantes/farmacologia , Ciclina E/antagonistas & inibidores , Resistencia a Medicamentos Antineoplásicos/genética , Glioblastoma/tratamento farmacológico , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteínas Oncogênicas/antagonistas & inibidores , Temozolomida/farmacologia , Animais , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Ciclina E/metabolismo , Feminino , Flavonoides/farmacologia , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Transplante de Neoplasias , Proteínas Oncogênicas/metabolismo , Piperidinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Transplante Heterólogo
19.
Cell Commun Signal ; 17(1): 85, 2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31349793

RESUMO

BACKGROUND: To clarify the effects of cylcin E1 expression on HCC tumor progression, we studied the expression of cyclin E1 and inhibitory efficacy of regorafenib and sorafenib in HCC cells, and investigated a potential therapy that combines regorafenib treatment with cyclin E1 inhibition. METHODS: Western blotting for caspase-3 and Hoechst 33225 staining was used to measure the expression level of apoptosis-related proteins under drug treatment. RESULTS: Our results showed that enhanced expression of cyclin E1 after transfection compromised apoptosis in HCC cells induced by regorafenib or sorafenib. Conversely, down-regulation of cyclin E1 gene expression or inhibition of cyclin E1 by the cyclin-dependent kinase (CDK) inhibitors dinaciclib (DIN) or flavopiridol sensitized HCC cells to regorafenib and sorafenib by inducing apoptosis. The expression of Mcl-1, which is modulated by STAT3, plays a key role in regulating the therapeutic effects of CDK inhibitors. Xenograft experiments conducted to test the efficacy of regorafenib combined with DIN showed dramatic tumor inhibitory effects due to induction of apoptosis. Our results suggested that the level of cyclin E1 expression in HCCs may be used as a pharmacodynamic biomarker to assess the antitumor effects of regorafenib or sorafenib. CONCLUSIONS: Combining regorafenib and CDK inhibitors may enhance the clinical efficiency of the treatment of HCCs.


Assuntos
Carcinoma Hepatocelular/patologia , Ciclina E/antagonistas & inibidores , Neoplasias Hepáticas/patologia , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Proteínas Oncogênicas/antagonistas & inibidores , Compostos de Fenilureia/farmacologia , Piridinas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Linhagem Celular Tumoral , Óxidos N-Cíclicos , Sinergismo Farmacológico , Flavonoides/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Indolizinas , Masculino , Camundongos , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Piperidinas/farmacologia , Prognóstico , Compostos de Piridínio/farmacologia , Fator de Transcrição STAT3/metabolismo , Sorafenibe/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
20.
J Biol Chem ; 292(52): 21264-21281, 2017 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-29109143

RESUMO

The tumor microenvironment is characterized by nutrient-deprived conditions in which the cancer cells have to adapt for survival. Serum starvation resembles the growth factor deprivation characteristic of the poorly vascularized tumor microenvironment and has aided in the discovery of key growth regulatory genes and microRNAs (miRNAs) that have a role in the oncogenic transformation. We report here that miR-874 down-regulates the major G1/S phase cyclin, cyclin E1 (CCNE1), during serum starvation. Because the adaptation of cancer cells to the tumor microenvironment is vital for subsequent oncogenesis, we tested for miR-874 and CCNE1 interdependence in osteosarcoma cells. We observed that miR-874 inhibits CCNE1 expression in primary osteoblasts, but in aggressive osteosarcomas, miR-874 is down-regulated, leading to elevated CCNE1 expression and appearance of cancer-associated phenotypes. We established that loss of miR-874-mediated control of cyclin E1 is a general feature of osteosarcomas. The down-regulation of CCNE1 by miR-874 is independent of E2F transcription factors. Restoration of miR-874 expression impeded S phase progression, suppressing aggressive growth phenotypes, such as cell invasion, migration, and xenograft tumors, in nude mice. In summary, we report that miR-874 inhibits CCNE1 expression during growth factor deprivation and that miR-874 down-regulation in osteosarcomas leads to CCNE1 up-regulation and more aggressive growth phenotypes.


Assuntos
Ciclina E/fisiologia , MicroRNAs/fisiologia , Proteínas Oncogênicas/fisiologia , Osteossarcoma/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica/genética , Ciclina E/genética , Ciclina G1/metabolismo , Regulação para Baixo , Pontos de Checagem da Fase G1 do Ciclo Celular/genética , Pontos de Checagem da Fase G1 do Ciclo Celular/fisiologia , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Camundongos , Camundongos Nus , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Oncogênicas/genética , Oncogenes , Osteossarcoma/genética , Fase S
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa