Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 551
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(22): e2303480120, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37216519

RESUMO

Metacaspases are part of an evolutionarily broad family of multifunctional cysteine proteases, involved in disease and normal development. As the structure-function relationship of metacaspases remains poorly understood, we solved the X-ray crystal structure of an Arabidopsis thaliana type II metacaspase (AtMCA-IIf) belonging to a particular subgroup not requiring calcium ions for activation. To study metacaspase activity in plants, we developed an in vitro chemical screen to identify small molecule metacaspase inhibitors and found several hits with a minimal thioxodihydropyrimidine-dione structure, of which some are specific AtMCA-IIf inhibitors. We provide mechanistic insight into the basis of inhibition by the TDP-containing compounds through molecular docking onto the AtMCA-IIf crystal structure. Finally, a TDP-containing compound (TDP6) effectively hampered lateral root emergence in vivo, probably through inhibition of metacaspases specifically expressed in the endodermal cells overlying developing lateral root primordia. In the future, the small compound inhibitors and crystal structure of AtMCA-IIf can be used to study metacaspases in other species, such as important human pathogens, including those causing neglected diseases.


Assuntos
Arabidopsis , Caspases , Humanos , Caspases/química , Simulação de Acoplamento Molecular , Apoptose , Proteínas de Ligação a DNA
2.
J Biol Chem ; 300(6): 107347, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38718867

RESUMO

A vast ensemble of extracellular proteins influences the development and progression of cancer, shaped and reshaped by a complex network of extracellular proteases. These proteases, belonging to the distinct classes of metalloproteases, serine proteases, cysteine proteases, and aspartic proteases, play a critical role in cancer. They often become dysregulated in cancer, with increases in pathological protease activity frequently driven by the loss of normal latency controls, diminished regulation by endogenous protease inhibitors, and changes in localization. Dysregulated proteases accelerate tumor progression and metastasis by degrading protein barriers within the extracellular matrix (ECM), stimulating tumor growth, reactivating dormant tumor cells, facilitating tumor cell escape from immune surveillance, and shifting stromal cells toward cancer-promoting behaviors through the precise proteolysis of specific substrates to alter their functions. These crucial substrates include ECM proteins and proteoglycans, soluble proteins secreted by tumor and stromal cells, and extracellular domains of cell surface proteins, including membrane receptors and adhesion proteins. The complexity of the extracellular protease web presents a significant challenge to untangle. Nevertheless, technological strides in proteomics, chemical biology, and the development of new probes and reagents are enabling progress and advancing our understanding of the pivotal importance of extracellular proteolysis in cancer.


Assuntos
Metástase Neoplásica , Neoplasias , Peptídeo Hidrolases , Proteólise , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/enzimologia , Peptídeo Hidrolases/metabolismo , Animais , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Progressão da Doença
3.
Plant J ; 118(5): 1500-1515, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38516730

RESUMO

Meloidogyne incognita is one of the most widely distributed plant-parasitic nematodes and causes severe economic losses annually. The parasite produces effector proteins that play essential roles in successful parasitism. Here, we identified one such effector named MiCE108, which is exclusively expressed within the nematode subventral esophageal gland cells and is upregulated in the early parasitic stage of M. incognita. A yeast signal sequence trap assay showed that MiCE108 contains a functional signal peptide for secretion. Virus-induced gene silencing of MiCE108 impaired the parasitism of M. incognita in Nicotiana benthamiana. The ectopic expression of MiCE108 in Arabidopsis suppressed the deposition of callose, the generation of reactive oxygen species, and the expression of marker genes for bacterial flagellin epitope flg22-triggered immunity, resulting in increased susceptibility to M. incognita, Botrytis cinerea, and Pseudomonas syringae pv. tomato (Pst) DC3000. The MiCE108 protein physically associates with the plant defense protease RD21A and promotes its degradation via the endosomal-dependent pathway, or 26S proteasome. Consistent with this, knockout of RD21A compromises the innate immunity of Arabidopsis and increases its susceptibility to a broad range of pathogens, including M. incognita, strongly indicating a role in defense against this nematode. Together, our data suggest that M. incognita deploys the effector MiCE108 to target Arabidopsis cysteine protease RD21A and affect its stability, thereby suppressing plant innate immunity and facilitating parasitism.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Nicotiana , Doenças das Plantas , Tylenchoidea , Animais , Arabidopsis/genética , Arabidopsis/imunologia , Arabidopsis/parasitologia , Tylenchoidea/fisiologia , Tylenchoidea/patogenicidade , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Doenças das Plantas/parasitologia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Nicotiana/genética , Nicotiana/parasitologia , Nicotiana/imunologia , Nicotiana/metabolismo , Pseudomonas syringae/fisiologia , Pseudomonas syringae/patogenicidade , Botrytis/fisiologia , Botrytis/patogenicidade , Cisteína Proteases/metabolismo , Cisteína Proteases/genética , Imunidade Vegetal , Interações Hospedeiro-Parasita , Raízes de Plantas/parasitologia , Raízes de Plantas/genética , Raízes de Plantas/imunologia , Raízes de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Helminto/metabolismo , Proteínas de Helminto/genética
4.
J Biol Chem ; 299(6): 104801, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37164157

RESUMO

Papain-like cysteine peptidases form a big and highly diverse superfamily of proteins involved in many important biological functions, such as protein turnover, deubiquitination, tissue remodeling, blood clotting, virulence, defense, and cell wall remodeling. High sequence and structure diversity observed within these proteins hinders their comprehensive classification as well as the identification of new representatives. Moreover, in general protein databases, many families already classified as papain like lack details regarding their mechanism of action or biological function. Here, we use transitive remote homology searches and 3D modeling to newly classify 21 families to the papain-like cysteine peptidase superfamily. We attempt to predict their biological function and provide structural characterization of 89 protein clusters defined based on sequence similarity altogether spanning 106 papain-like families. Moreover, we systematically discuss observed diversity in sequences, structures, and catalytic sites. Eventually, we expand the list of human papain-related proteins by seven representatives, including dopamine receptor-interacting protein 1 as potential deubiquitinase, and centriole duplication regulating CEP76 as retaining catalytically active peptidase-like domain. The presented results not only provide structure-based rationales to already existing peptidase databases but also may inspire further experimental research focused on peptidase-related biological processes.


Assuntos
Cisteína Proteases , Papaína , Humanos , Domínio Catalítico , Centríolos/metabolismo , Cisteína Proteases/química , Cisteína Proteases/classificação , Cisteína Proteases/metabolismo , Enzimas Desubiquitinantes/metabolismo , Modelos Moleculares , Papaína/química , Papaína/classificação , Bases de Dados de Proteínas
5.
J Biol Chem ; 299(11): 105300, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37777157

RESUMO

Ubiquitin-specific proteases (USPs) are crucial for controlling cellular proteostasis and signaling pathways but how deubiquitination is selective remains poorly understood, in particular between paralogues. Here, we developed a fusion tag method by mining the Protein Data Bank and trapped USP11, a key regulator of DNA double-strand break repair, in complex with a novel engineered substrate mimetic. Together, this enabled structure determination of USP11 as a Michaelis-like complex that revealed key S1 and S1' binding site interactions with a substrate. Combined mutational, enzymatic, and binding experiments identified Met77 in linear diubiquitin as a significant residue that leads to substrate discrimination. We identified an aspartate "gatekeeper" residue in the S1' site of USP11 as a contributing feature for discriminating against linear diubiquitin. When mutated to a glycine, the corresponding residue in paralog USP15, USP11 acquired elevated activity toward linear diubiquitin in-gel shift assays, but not controls. The reverse mutation in USP15 confirmed that this position confers paralog-specific differences impacting diubiquitin cleavage rates. The results advance our understanding of the molecular basis for the higher selectivity of USP11 compared to USP15 and may aid targeted inhibitor development. Moreover, the reported carrier-based crystallization strategy may be applicable to other challenging targets.


Assuntos
Modelos Moleculares , Proteases Específicas de Ubiquitina , Sítios de Ligação , Proteases Específicas de Ubiquitina/química , Proteases Específicas de Ubiquitina/metabolismo , Humanos , Ubiquitinação/genética , Estrutura Terciária de Proteína , Cristalografia por Raios X , Especificidade por Substrato/genética
6.
Plant Cell Physiol ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619117

RESUMO

Verticillium dahliae is a kind of pathogenic fungus that brings about wilt disease and great losses in cotton. The molecular mechanism of the effectors in V. dahliae regulating cotton immunity remains largely unknown. Here we identified an effector of V. dahliae, VdPHB1, whose gene expression is highly induced by infection. VdPHB1 protein is localized in the intercellular space of cotton plants. Knockout VdPHB1 gene in V. dahliae had no effect on pathogen growth, but decreased the virulence in cotton. VdPHB1 ectopically expressed Arabidopsis plants were growth-inhibited and significantly susceptible to V. dahliae. Further, VdPHB1 interacted with the type II metacaspase GhMC4. GhMC4 gene silenced cotton plants were more sensitive to V. dahliae with reduced expressions of pathogen defense-related and programmed cell death genes. The accumulation of GhMC4 protein were concurrently repressed when VdPHB1 protein expressed during infection. In summary, these results revealed a novel molecular mechanism of virulence regulation that the secreted effector VdPHB1 represses the activity of cysteine protease for helping V. dahliae infection in cotton.

7.
BMC Biotechnol ; 24(1): 10, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38439037

RESUMO

Polymicrobial communities lead to worsen the wound infections, due to mixed biofilms, increased antibiotic resistance, and altered virulence production. Promising approaches, including enzymes, may overcome the complicated condition of polymicrobial infections. Therefore, this study aimed to investigate Staphopain A-mediated virulence and resistance alteration in an animal model of Staphylococcus aureus and Pseudomonas aeruginosa co-infection. S. aureus and P. aeruginosa were co-cultured on the L-929 cell line and wound infection in an animal model. Then, recombinant staphopain A was purified and used to treat mono- and co-infections. Following the treatment, changes in virulence factors and resistance were investigated through phenotypic methods and RT-PCR. Staphopain A resulted in a notable reduction in the viability of S. aureus and P. aeruginosa. The biofilm formed in the wound infection in both animal model and cell culture was disrupted remarkably. Moreover, the biofilm-encoding genes, quorum sensing regulating genes, and virulence factors (hemolysin and pyocyanin) controlled by QS were down-regulated in both microorganisms. Furthermore, the resistance to vancomycin and doripenem decreased following treatment with staphopain A. According to this study, staphopain A might promote wound healing and cure co-infection. It seems to be a promising agent to combine with antibiotics to overcome hard-to-cure infections.


Assuntos
Coinfecção , Infecção dos Ferimentos , Animais , Virulência , Pseudomonas aeruginosa/genética , Staphylococcus aureus/genética , Coinfecção/tratamento farmacológico , Fatores de Virulência/genética , Modelos Animais , Resistência Microbiana a Medicamentos , Infecção dos Ferimentos/tratamento farmacológico
8.
J Exp Bot ; 75(5): 1530-1546, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-37976211

RESUMO

Arabidopsis PHYTOALEXIN DEFICIENT 4 (PAD4) has an essential role in pathogen resistance as a heterodimer with ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1). Here we investigated an additional PAD4 role in which it associates with and promotes the maturation of the immune-related cysteine protease RESPONSIVE TO DEHYDRATION 19 (RD19). We found that RD19 and its paralog RD19c promoted EDS1- and PAD4-mediated effector-triggered immunity to an avirulent Pseudomonas syringae strain, DC3000, expressing the effector AvrRps4 and basal immunity against the fungal pathogen Golovinomyces cichoracearum. Overexpression of RD19, but not RD19 protease-inactive catalytic mutants, in Arabidopsis transgenic lines caused EDS1- and PAD4-dependent autoimmunity and enhanced pathogen resistance. In these lines, RD19 maturation to a pro-form required its catalytic residues, suggesting that RD19 undergoes auto-processing. In transient assays, PAD4 interacted preferentially with the RD19 pro-protease and promoted its nuclear accumulation in leaf cells. Our results lead us to propose a model for PAD4-stimulated defense potentiation. PAD4 promotes maturation and nuclear accumulation of processed RD19, and RD19 then stimulates EDS1-PAD4 dimer activity to confer pathogen resistance. This study highlights potentially important additional PAD4 functions that eventually converge on canonical EDS1-PAD4 dimer signaling in plant immunity.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Cisteína Proteases , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/química , Hidrolases de Éster Carboxílico/química , Cisteína Proteases/genética , Fitoalexinas , Doenças das Plantas/microbiologia , Imunidade Vegetal/genética
9.
Bioorg Med Chem Lett ; : 129887, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39002936

RESUMO

Human cathepsin K (CatK) stands out as a promising target for the treatment of osteoporosis, considering its role in degrading the bone matrix. Given the small and shallow S2 subsite of CatK and considering its preference for proline or hydroxyproline, we now propose the rigidification of the leucine fragment found at the P2 position in a dipeptidyl-based inhibitor, generating rigid proline-based analogs. Accordingly, with these new proline-based peptidomimetics inhibitors, we selectively inhibited CatK against other human cathepsins (B, L and S). Among these new ligands, the most active one exhibited a high affinity (pKi = 7.3 - 50.1 nM) for CatK and no inhibition over the other cathepsins. This specific inhibitor harbors two novel substituents never employed in other CatK inhibitors: the trifluoromethylpyrazole and the 4-methylproline at P3 and P2 positions. These results broaden and advance the path toward new potent and selective inhibitors for CatK.

10.
Artigo em Inglês | MEDLINE | ID: mdl-38924147

RESUMO

In spite of 150 years of studying malaria, the unique features of the malarial parasite, Plasmodium, still perplex researchers. One of the methods by which the parasite manages its gene expression is epigenetic regulation, the champion of which is PfGCN5, an essential enzyme responsible for acetylating histone proteins. PfGCN5 is a ∼170 kDa chromatin-remodeling enzyme that harbors the conserved bromodomain and acetyltransferase domain situated in its C-terminus domain. Although the PfGCN5 proteolytic processing is essential for its activity, the specific protease involved in this process still remains elusive. Identification of PfGCN5 interacting proteins through immunoprecipitation (IP) followed by LC-tandem mass spectrometry analysis revealed the presence of food vacuolar proteins, such as the cysteine protease Falcipain 3 (FP3), in addition to the typical members of the PfGCN5 complex. The direct interaction between FP3 and PfGCN5 was further validated by in vitro pull-down assay as well as IP assay. Subsequently, use of cysteine protease inhibitor E64d led to the inhibition of protease-specific processing of PfGCN5 with concomitant enrichment and co-localization of PfGCN5 and FP3 around the food vacuole as evidenced by confocal microscopy as well as electron microscopy. Remarkably, the proteolytic cleavage of the nuclear protein PfGCN5 by food vacuolar protease FP3 is exceptional and atypical in eukaryotic organisms. Targeting the proteolytic processing of GCN5 and the associated protease FP3 could provide a novel approach for drug development aimed at addressing the growing resistance of parasites to current antimalarial drugs.

11.
Cell Mol Life Sci ; 80(11): 344, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37910326

RESUMO

During macroautophagy, the Atg8 protein is conjugated to phosphatidylethanolamine (PE) in autophagic membranes. In Apicomplexan parasites, two cysteine proteases, Atg4 and ovarian tumor unit (Otu), have been identified to delipidate Atg8 to release this protein from membranes. Here, we investigated the role of cysteine proteases in Atg8 conjugation and deconjugation and found that the Plasmodium parasite consists of both activities. We successfully disrupted the genes individually; however, simultaneously, they were refractory to deletion and essential for parasite survival. Mutants lacking Atg4 and Otu showed normal blood and mosquito stage development. All mice infected with Otu KO sporozoites became patent; however, Atg4 KO sporozoites either failed to establish blood infection or showed delayed patency. Through in vitro and in vivo analysis, we found that Atg4 KO sporozoites invade and normally develop into early liver stages. However, nuclear and organelle differentiation was severely hampered during late stages and failed to mature into hepatic merozoites. We found a higher level of Atg8 in Atg4 KO parasites, and the deconjugation of Atg8 was hampered. We confirmed Otu localization on the apicoplast; however, parasites lacking Otu showed no visible developmental defects. Our data suggest that Atg4 is the primary deconjugating enzyme and that Otu cannot replace its function completely because it cleaves the peptide bond at the N-terminal side of glycine, thereby irreversibly inactivating Atg8 during its recycling. These findings highlight a role for the Atg8 deconjugation pathway in organelle biogenesis and maintenance of the homeostatic cellular balance.


Assuntos
Cisteína Proteases , Malária , Parasitos , Animais , Camundongos , Cisteína Proteases/genética , Cisteína Proteases/metabolismo , Parasitos/metabolismo , Plasmodium berghei , Família da Proteína 8 Relacionada à Autofagia/genética , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Autofagia , Proteínas de Protozoários/metabolismo
12.
Ecotoxicol Environ Saf ; 281: 116615, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38905933

RESUMO

BACKGROUND: Paraquat (PQ) is a widely used herbicide that poisons human by accident or intentional ingestion. PQ poisoning causes systemic inflammatory response syndrome (SIRS) resulting in acute lung injury (ALI) with an extremely high mortality rate. Blood trematode Schistosoma japonicum-produced cystatin (Sj-Cys) is a strong immunomodulatory protein that has been experimentally used to treat inflammation related diseases. In this study, Sj-Cys recombinant protein (rSj-Cys) was used to treat PQ-induced lung injury and the immunological mechanism underlying the therapeutic effect was investigated. METHODS: PQ-induced acute lung injury mouse model was established by intraperitoneally injection of 20 mg/kg of paraquat. The poisoned mice were treated with rSj-Cys and the survival rate was observed up to 7 days compared with the group without treatment. The pathological changes of PQ-induced lung injury were observed by examining the histochemical sections of affected lung tissue and the wet to dry ratio of lung as a parameter for inflammation and edema. The levels of the inflammation related cytokines IL-6 and TNF-α and regulatory cytokines IL-10 and TGF-ß were measured in sera and in affected lung tissue using ELISA and their mRNA levels in lung tissue using RT-PCR. The macrophages expressing iNOS were determined as M1 and those expressing Arg-1 as M2 macrophages. The effect of rSj-Cys on the transformation of inflammatory M1 to regulatory M2 macrophages was measured in affected lung tissue in vivo (EKISA and RT-PCR) and in MH-S cell line in vitro (flow cytometry). The expression levels of TLR2 and MyD88 in affected lung tissue were also measured to determine their role in the therapy of rSj-Cys on PQ-induced lung injury. RESULT: We identified that treatment with rSj-Cys significantly improved the survival rate of mice with PQ-induced lung injury from 30 % (untreated) to 80 %, reduced the pathological damage of poisoning lung tissue, associated with significantly reduced levels of proinflammatory cytokines (IL-6 from 1490 to 590 pg/ml, TNF-α from 260 to 150 pg/ml) and increased regulatory cytokines (IL-10 from360 to 550 pg/ml, and TGF-ß from 220 to 410 pg/ml) in both sera (proteins) and affected lung tissue (proteins and mRNAs). The polarization of macrophages from M1to M2 type was found to be involved in the therapeutic effect of rSj-Cys on the PQ-induced acute lung injury, possibly through inhibiting TLR2/MyD88 signaling pathway. CONCLUSIONS: Our study demonstrated the therapeutic effect of rSj-Cys on PQ poisoning caused acute lung injury by inducing M2 macrophage polarization through inhibiting TLR2/MyD88 signaling pathway. The finding in this study provides an alternative approach for the treatment of PQ poisoning and other inflammatory diseases.


Assuntos
Lesão Pulmonar Aguda , Cistatinas , Paraquat , Schistosoma japonicum , Animais , Paraquat/toxicidade , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/tratamento farmacológico , Camundongos , Herbicidas/toxicidade , Macrófagos/efeitos dos fármacos , Pulmão/patologia , Pulmão/efeitos dos fármacos , Masculino , Citocinas/metabolismo , Modelos Animais de Doenças
13.
Int J Mol Sci ; 25(4)2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38396918

RESUMO

The structure and biochemical properties of protease inhibitors from the thyropin family are poorly understood in parasites and pathogens. Here, we introduce a novel family member, Ir-thyropin (IrThy), which is secreted in the saliva of Ixodes ricinus ticks, vectors of Lyme borreliosis and tick-borne encephalitis. The IrThy molecule consists of two consecutive thyroglobulin type-1 (Tg1) domains with an unusual disulfide pattern. Recombinant IrThy was found to inhibit human host-derived cathepsin proteases with a high specificity for cathepsins V, K, and L among a wide range of screened cathepsins exhibiting diverse endo- and exopeptidase activities. Both Tg1 domains displayed inhibitory activities, but with distinct specificity profiles. We determined the spatial structure of one of the Tg1 domains by solution NMR spectroscopy and described its reactive center to elucidate the unique inhibitory specificity. Furthermore, we found that the inhibitory potency of IrThy was modulated in a complex manner by various glycosaminoglycans from host tissues. IrThy was additionally regulated by pH and proteolytic degradation. This study provides a comprehensive structure-function characterization of IrThy-the first investigated thyropin of parasite origin-and suggests its potential role in host-parasite interactions at the tick bite site.


Assuntos
Ixodes , Saliva , Animais , Humanos , Saliva/metabolismo , Cisteína , Glicosaminoglicanos , Catepsinas/metabolismo , Ixodes/metabolismo , Espectroscopia de Ressonância Magnética
14.
J Biol Chem ; 298(10): 102502, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36116553

RESUMO

Under pathophysiologic conditions such as Alzheimer's disease and cancer, the endolysosomal cysteine protease legumain was found to translocate to the cytosol, the nucleus, and the extracellular space. These noncanonical localizations demand for a tight regulation of legumain activity, which is in part conferred by protein inhibitors. While there is a significant body of knowledge on the interaction of human legumain with endogenous cystatins, only little is known on its regulation by fungal mycocypins. Mycocypins are characterized by (i) versatile, plastic surface loops allowing them to inhibit different classes of enzymes and (ii) a high resistance toward extremes of pH and temperature. These properties make mycocypins attractive starting points for biotechnological and medical applications. In this study, we show that mycocypins utilize an adaptable reactive center loop to target the active site of legumain in a substrate-like manner. The interaction was further stabilized by variable, isoform-specific exosites, converting the substrate recognition into inhibition. Additionally, we found that selected mycocypins were capable of covalent complex formation with legumain by forming a disulfide bond to the active site cysteine. Furthermore, our inhibition studies with other clan CD proteases suggested that mycocypins may serve as broad-spectrum inhibitors of clan CD proteases. Our studies uncovered the potential of mycocypins as a new scaffold for drug development, providing the basis for the design of specific legumain inhibitors.


Assuntos
Cistatinas , Cisteína Endopeptidases , Humanos , Cisteína Endopeptidases/metabolismo , Cistatinas/metabolismo , Domínio Catalítico , Peptídeo Hidrolases/metabolismo
15.
J Biol Chem ; 298(5): 101919, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35405098

RESUMO

The Candidate Phyla Radiation is a recently uncovered and vast expansion of the bacterial domain of life, made up of largely uncharacterized phyla that lack isolated representatives. This unexplored territory of genetic diversity presents an abundance of novel proteins with potential applications in the life-science sectors. Here, we present the structural and functional elucidation of CPR-C4, a hypothetical protein from the genome of a thermophilic Candidate Phyla Radiation organism, identified through metagenomic sequencing. Our analyses revealed that CPR-C4 is a member of a family of highly conserved proteins within the Candidate Phyla Radiation. The function of CPR-C4 as a cysteine protease was predicted through remote structural similarity to the Homo sapiens vasohibins and subsequently confirmed experimentally with fluorescence-based activity assays. Furthermore, detailed structural and sequence alignment analysis enabled identification of a noncanonical cysteine-histidine-leucine(carbonyl) catalytic triad. The unexpected structural and functional similarities between CPR-C4 and the human vasohibins suggest an evolutionary relationship undetectable at the sequence level alone.


Assuntos
Bactérias , Peptídeo Hidrolases , Bactérias/classificação , Bactérias/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Sequência Conservada , Humanos , Metagenoma , Metagenômica , Peptídeo Hidrolases/química , Peptídeo Hidrolases/genética , Filogenia , Estrutura Terciária de Proteína
16.
Plant J ; 112(1): 249-267, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35960661

RESUMO

Resistance to Pseudomonas syringae pv. maculicola 1 (RPM1)-induced protein kinase (RIPK) in Arabidopsis belongs to the receptor-like cytoplasmic kinase (RLCK) family and plays a vital role in immunity. However, the role of RLCKs in the high-temperature seedling-plant (HTSP) resistance of wheat (Triticum aestivum) to Puccinia striiformis f. sp. tritici (Pst), the stripe rust pathogen, remains unclear. Here, we identified a homologous gene of RIPK in wheat, namely TaRIPK. Expression of TaRIPK was induced by Pst inoculation and high temperatures. Silencing of TaRIPK reduced the expression level of TaRPM1, resulting in weaker HTSP resistance. Moreover, TaRIPK interacts with and phosphorylates papain-like cysteine protease 1 (TaPLCP1). Meanwhile, we found that the Pst-secreted protein PSTG_01766 targets TaPLCP1. Transient expression of PSTG_01766 inhibited basal immunity in tobacco (Nicotiana benthamiana) and wheat. The role of PSTG_01766 as an effector involved in HTSP resistance was further supported by host-induced gene silencing and bacterial type three secretion system-mediated delivery into wheat. PSTG_01766 inhibited the TaRIPK-induced phosphorylation of TaPLCP1. Furthermore, PSTG_01766 has the potential to influence the subcellular localization of TaPLCP1. Overall, we suggest that the TaRIPK-TaPLCP1-TaRPM1 module fits the guard model for disease resistance, participating in HTSP resistance. PSTG_01766 decreases HTSP resistance via targeting TaPLCP1. Guarded by wheat and attacked by Pst, TaPLCP1 may serve as a central hub of the defense response. Our findings improve the understanding of the molecular mechanism of wheat HTSP resistance, which may be an important strategy for controlling stripe rust in the face of global warming.


Assuntos
Basidiomycota , Triticum , Basidiomycota/fisiologia , Resistência à Doença/genética , Papaína/metabolismo , Doenças das Plantas/microbiologia , Proteínas Quinases/metabolismo , Puccinia , Plântula/metabolismo , Temperatura , Nicotiana , Triticum/metabolismo
17.
Mol Genet Genomics ; 298(1): 49-65, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36271918

RESUMO

This study aimed to evaluate the postulated cellular function of a novel family of amino acid (acyl carrier protein) ligases (AALs) in natural product biosynthesis. Here, we analyzed the manually curated, putative, aal-associated natural product biosynthetic gene clusters (NP BGCs) using two computational platforms for NP prediction, antiSMASH-BiG-SCAPE-CORASON and DeepBGC. The detected BGCs included a diversity of type I polyketide/nonribosomal peptide (PKS/NRPS) hybrid BGCs, exemplified by the guadinomine BGC, which suggested a dedicated function of AALs in the biosynthesis of rare (2S)-aminomalonyl-ACP extension units. Besides modular PKS/NRPSs and NRPSs, AAL-associated BGCs were predicted to assemble arylpolyenes, ladderane lipids, phosphonates, aminoglycosides, ß-lactones, and thioamides of both nonribosomal and ribosomal origins. Additionally, we revealed a frequent association of AALs with putative, seldom observed transglutaminase-like and BtrH-like transferases of the cysteine protease superfamily, which may form larger families of ACP-dependent amide bond catalysts used in NP synthesis. Our results disclosed an exceptional chemical novelty and biosynthetic potential of the AAL-associated BGCs in NP biosynthesis. The presented in silico evidence supports the initial hypothesis and provides an important foundation for future experimental studies aimed at discovering novel pharmaceutically relevant active compounds.


Assuntos
Produtos Biológicos , Ligases , Ligases/genética , Proteína de Transporte de Acila/química , Proteína de Transporte de Acila/genética , Proteína de Transporte de Acila/metabolismo , Aminoácidos/genética , Família Multigênica
18.
Chemistry ; 29(27): e202203764, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-36808662

RESUMO

The emergence of catalytic activity associated with a disassembly process is reported, reminiscent of complex biological systems. A cystine derivative with pendant imidazole groups self-assembles into cationic nanorods in the presence of the cationic surfactants cetylpyridinium chloride (CPC) or cetyltrimethylammonium bromide (CTAB). Disulfide reduction triggers nanorod disassembly and the generation of a simple cysteine protease mimic, which shows a dramatically improved catalytic efficiency in the hydrolysis of p-nitrophenyl acetate (PNPA).


Assuntos
Cisteína Proteases , Nanotubos , Cetrimônio , Tensoativos , Compostos de Cetrimônio , Cátions
19.
Bioorg Med Chem Lett ; 90: 129324, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37182612

RESUMO

The outbreak of SARS-CoV-2 has caused global crisis on health and economics. The multiple drug-drug interaction risk associated with ritonavir warrants specialized assessment before using Paxlovid. Here we report a multiple-round SAR study to provide a novel bicyclic[3.3.0]proline peptidyl α-ketoamide compound 4a, which is endowed with excellent antiviral activities and pharmacokinetic properties. Also, in vivo HCoV-OC43 neonatal mice model demonstrated compound 4a has good in vivo efficacy. Based on these properties, compound 4a worth further SAR optimization with the goal to develop compounds with better pharmacokinetic properties and finally to realize single agent efficacy in human.


Assuntos
COVID-19 , Inibidores de Proteases , Animais , Humanos , Camundongos , Inibidores de Proteases/farmacologia , Inibidores de Proteases/uso terapêutico , SARS-CoV-2 , Antivirais/farmacologia , Antivirais/uso terapêutico , Prolina/farmacologia
20.
Bioorg Med Chem ; 95: 117498, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37857256

RESUMO

The SARS-CoV-2 papain-like protease (PLpro) and main protease (Mpro) are nucleophilic cysteine enzymes that catalyze hydrolysis of the viral polyproteins pp1a/1ab. By contrast with Mpro, PLpro is also a deubiquitinase (DUB) that accepts post-translationally modified human proteins as substrates. Here we report studies on the DUB activity of PLpro using synthetic Nε-lysine-branched oligopeptides as substrates that mimic post-translational protein modifications by ubiquitin (Ub) or Ub-like modifiers (UBLs), such as interferon stimulated gene 15 (ISG15). Mass spectrometry (MS)-based assays confirm the DUB activity of isolated recombinant PLpro. They reveal that the sequence of both the peptide fragment derived from the post-translationally modified protein and that derived from the UBL affects PLpro catalysis; the nature of substrate binding in the S sites appears to be more important for catalytic efficiency than binding in the S' sites. Importantly, the results reflect the reported cellular substrate selectivity of PLpro, i.e. human proteins conjugated to ISG15 are better substrates than those conjugated to Ub or other UBLs. The combined experimental and modelling results imply that PLpro catalysis is affected not only by the identity of the substrate residues binding in the S and S' sites, but also by the substrate fold and the conformational dynamics of the blocking loop 2 of the PLpro:substrate complex. Nε-Lysine-branched oligopeptides thus have potential to help the identification of PLpro substrates. More generally, the results imply that MS-based assays with Nε-lysine-branched oligopeptides have potential to monitor catalysis by human DUBs and hence to inform on their substrate preferences.


Assuntos
COVID-19 , Lisina , Humanos , Proteínas Virais/metabolismo , SARS-CoV-2 , Ubiquitina/metabolismo , Enzimas Desubiquitinantes , Oligopeptídeos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa