RESUMO
KEY POINTS: Several distinct strategies produce and conserve heat to maintain the body temperature of mammals, each associated with unique physiologies, with consequences for wellness and disease susceptibility Highly regulated properties of skin offset the total requirement for heat production We hypothesize that the adipose component of skin is primarily responsible for modulating heat flux; here we evaluate the relative regulation of adipose depots in mouse and human, to test their recruitment to heat production and conservation We found that insulating mouse dermal white adipose tissue accumulates in response to environmentally and genetically induced cool stress; this layer is one of two adipose depots closely apposed to mouse skin, where the subcutaneous mammary gland fat pads are actively recruited to heat production In contrast, the body-wide adipose depot associated with human skin produces heat directly, potentially creating an alternative to the centrally regulated brown adipose tissue ABSTRACT: Mammalian skin impacts metabolic efficiency system-wide, controlling the rate of heat loss and consequent heat production. Here we compare the unique fat depots associated with mouse and human skin, to determine whether they have corresponding functions and regulation. For humans, we assay a skin-associated fat (SAF) body-wide depot to distinguish it from the subcutaneous fat pads characteristic of the abdomen and upper limbs. We show that the thickness of SAF is not related to general adiposity; it is much thicker (1.6-fold) in women than men, and highly subject-specific. We used molecular and cellular assays of ß-adrenergic-induced lipolysis and found that dermal white adipose tissue (dWAT) in mice is resistant to lipolysis; in contrast, the body-wide human SAF depot becomes lipolytic, generating heat in response to ß-adrenergic stimulation. In mice challenged to make more heat to maintain body temperature (either environmentally or genetically), there is a compensatory increase in thickness of dWAT: a corresponding ß-adrenergic stimulation of human skin adipose (in vivo or in explant) depletes adipocyte lipid content. We summarize the regulation of skin-associated adipocytes by age, sex and adiposity, for both species. We conclude that the body-wide dWAT depot of mice shows unique regulation that enables it to be deployed for heat preservation; combined with the actively lipolytic subcutaneous mammary fat pads they enable thermal defence. The adipose tissue that covers human subjects produces heat directly, providing an alternative to the brown adipose tissues.
Assuntos
Tecido Adiposo Marrom , Termogênese , Tecido Adiposo Marrom/fisiologia , Tecido Adiposo Branco/metabolismo , Animais , Feminino , Humanos , Lipólise , Gordura Subcutânea/metabolismo , Termogênese/fisiologiaRESUMO
The loss of dermal white adipose tissue (dWAT) is vital to the formation of dermal fibrosis (DF), but the specific mechanism is not well understood. A few studies are reviewed to explore the role of dWAT in the formation of DF. Recent findings indicated that the adipocytes-to-myofibroblasts transition in dWAT reflects the direct contribution to the DF formation. While adipose-derived stem cells (ADSCs) contained in dWAT express antifibrotic cytokines, the loss of ADSCs leads to skin protection decreased, which indirectly exacerbates DF and tissue damage. Therefore, blocking or reversing the adipocytes-to-myofibroblasts transition or improving the survival of ADSCs in dWAT and the expression of antifibrotic cytokines may be an effective strategy for the treatment of DF.
Assuntos
Adipócitos , Tecido Adiposo Branco , Adipócitos/metabolismo , Tecido Adiposo , Tecido Adiposo Branco/metabolismo , Citocinas/metabolismo , Fibrose , Humanos , Miofibroblastos/metabolismoRESUMO
Effective tissue response to infection and injury essentially relies on the fine-tuned induction and subsequent resolution of inflammation. Recent research highlighted multiple functions of dermal white adipose tissue (dWAT) beyond its traditional role as an energy reservoir. However, in contrast to other fat depots, there are only limited data about putative immune-regulatory functions of dWAT. Therefore, we investigated the impact of dWAT in the control of an acute skin inflammation. Skin inflammation triggers the activation of dWAT. In turn, soluble mediators of activated dWAT stimulate the expression of numerous genes controlling skin inflammation, including the T helper 2 cell cytokines Il4 and Il13, in myeloid cells in vitro. Consistently, myeloid cells isolated from inflamed skin showed a significant upregulation of Il-4/13 expression compared with those isolated from healthy skin. Mechanistically, we demonstrate that IL-33 released from activated dWAT is responsible for IL-4/13 stimulation in myeloid cells. Interestingly, obesity attenuates IL-33 secretion in dWAT during inflammation, resulting in decreased Il-4 and Il-13 expressions in myeloid cells. Our data reveal an IL-33-IL-4/13 signaling cascade initiated from dWAT in a T helper 2-independent context of inflammation that may contribute to limitation of inflammation. This cascade seems to be disturbed in individuals with obesity with prolonged inflammation.
RESUMO
Although the impact of age, gender, and obesity on the skin wound healing process has been extensively studied, the data related to gender differences in aspects of skin scarring are limited. The present study performed on abdominal human intact and scar skin focused on determining gender differences in extracellular matrix (ECM) composition, dermal white adipose tissue (dWAT) accumulation, and Foxn1 expression as a part of the skin response to injury. Scar skin of men showed highly increased levels of COLLAGEN 1A1, COLLAGEN 6A3, and ELASTIN mRNA expression, the accumulation of thick collagen I-positive fibers, and the accumulation of α-SMA-positive cells in comparison to the scar skin of women. However, post-injured skin of women displayed an increase (in comparison to post-injured men's skin) in collagen III accumulation in the scar area. On the contrary, women's skin samples showed a tendency towards higher levels of adipogenic-related genes (PPARγ, FABP4, LEPTIN) than men, regardless of intact or scar skin. Intact skin of women showed six times higher levels of LEPTIN mRNA expression in comparison to men intact (p < 0.05), men post-injured (p < 0.05), or women post-injured scar (p < 0.05) skin. Higher levels of FOXN1 mRNA and protein were also detected in women than in men's skin. In conclusion, the present data confirm and extend (dWAT layer) the data related to the presence of differences between men and women in the skin, particularly in scar tissues, which may contribute to the more effective and gender-tailored improvement of skin care interventions.
RESUMO
Obesity is a growing epidemic worldwide, and it is also considered a major environmental factor contributing to the pathogenesis of inflammatory skin diseases, including psoriasis (PSO) and atopic dermatitis (AD). Moreover, obesity worsens the course and impairs the treatment response of these inflammatory skin diseases. Emerging evidence highlights that hypertrophied adipocytes and infiltrated immune cells secrete a variety of molecules, including fatty acids and adipokines, such as leptin, adiponectin, and a panel of cytokines/chemokines that modulate our immune system. In this review, we describe how adipose hypertrophy leads to a chronic low-grade inflammatory state in obesity and how obesity-related inflammatory factors are involved in the pathogenesis of PSO and/or AD. Finally, we discuss the potential role of antimicrobial peptides, mechanical stress and impairment of epidermal barrier function mediated by fast expansion, and dermal fat in modulating skin inflammation. Together, this review summarizes the current literature on how obesity is associated with the pathogenesis of PSO and AD, highlighting the potentially important but overlooked immunomodulatory role of adipose tissue in the skin.