Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(16)2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34450914

RESUMO

Drones are frequently used for the delivery of materials or other goods, and to facilitate the capture and transmission of data. Moreover, drone networks have gained significant interest in a number of scenarios, such as in quarantined or isolated areas, following technical damage due to a disaster, or in non-urbanized areas without communication infrastructure. In this context, we propose a network of drones that are able to fly on a map covered by regular polygons, with a well-established mobility schedule, to carry and transfer data. Two means exist to equidistantly cover an area with points, namely, grouping the points into equilateral triangles or squares. In this study, a network of drones that fly in an aerial area divided into squares was proposed and investigated. This network was compared with the case in which the area is divided into equilateral triangles. The cost of the square drone network was lower than that of the triangular network with the same cell length, but the efficiency factors were better for the latter. Two situations related to increasing the drone autonomy using drone charging or battery changing stations were analyzed. This study proposed a Delay Tolerant Network (DTN) to optimize the transmission of data. Multiple simulation studies based on experimental flight tests were performed using the proposed algorithm versus five traditional DTN methods. A light Wi-Fi Arduino development board was used for the data transfer between drones and stations using delivery protocols. The efficiency of data transmission using single-copy and multiple-copy algorithms was analyzed. Simulation results showed a better performance of the proposed Time-Dependent Drone (TD-Drone) Dijkstra algorithm compared with the Epidemic, Spray and Wait, PRoPHET, MaxProp, and MaxDelivery routing protocols.


Assuntos
Algoritmos , Desastres
2.
Sensors (Basel) ; 19(21)2019 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31683695

RESUMO

The spectrum handoff is highly critical as well as challenging in a cognitive radio ad hoc network (CRAHN) due to lack of coordination among secondary users (SUs), which leads to collisions among the SUs and consequently affects the performance of the network in terms of spectrum utilization and throughput. The target channel selection mechanism as part of handoff process can play an enormously significant role in minimizing the collisions among the SUs and improving the performance of a cognitive radio network (CRN). In this paper, an enhanced target channel selection scheme based on imperfect channel state prediction is proposed for the spectrum handoff among the SUs in a CRAHN. The proposed scheme includes an improved frame structure that increases coordination among the SUs in the ad hoc environment and helps in organizing the SUs according to the shortest job first principle during channel access. Unlike the existing prediction-based spectrum handoff techniques, the proposed scheme takes into account the accuracy of channel state prediction; the SUs affected due to false prediction are compensated by allowing them to contend for channel access within the same transmission cycle and thus enabling them to achieve higher throughput. The proposed scheme has been compared with the contemporary spectrum handoff schemes and the results have demonstrated substantial improvement in throughput and extended data delivery time by virtue of the reduced number of collisions.

3.
Sensors (Basel) ; 19(3)2019 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-30691141

RESUMO

The key concerns to enhance the lifetime of IoT-enabled Underwater Wireless Sensor Networks (IoT-UWSNs) are energy-efficiency and reliable data delivery under constrained resource. Traditional transmission approaches increase the communication overhead, which results in congestion and affect the reliable data delivery. Currently, many routing protocols have been proposed for UWSNs to ensure reliable data delivery and to conserve the node's battery with minimum communication overhead (by avoiding void holes in the network). In this paper, adaptive energy-efficient routing protocols are proposed to tackle the aforementioned problems using the Shortest Path First (SPF) with least number of active nodes strategy. These novel protocols have been developed by integrating the prominent features of Forward Layered Multi-path Power Control One (FLMPC-One) routing protocol, which uses 2-hop neighbor information, Forward Layered Multi-path Power Control Two (FLMPC-Two) routing protocol, which uses 3-hop neighbor information and 'Dijkstra' algorithm (for shortest path selection). Different Packet Sizes (PSs) with different Data Rates (DRs) are also taken into consideration to check the dynamicity of the proposed protocols. The achieved outcomes clearly validate the proposed protocols, namely: Shortest Path First using 3-hop neighbors information (SPF-Three) and Breadth First Search with Shortest Path First using 3-hop neighbors information (BFS-SPF-Three). Simulation results show the effectiveness of the proposed protocols in terms of minimum Energy Consumption (EC) and Required Packet Error Rate (RPER) with a minimum number of active nodes at the cost of affordable delay.

4.
Sensors (Basel) ; 19(19)2019 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-31547635

RESUMO

Cognitive radio networks (CRNs) rely on sensing of the licensed spectrum of a primary network to dynamically ascertain underutilized portion of the spectrum, thus affording additional communication opportunities. In a CRN, a single homogeneous spectrum access, such as interweave only deprives the secondary users (SUs) of channel access during handoff, particularly at high primary network traffic. Therefore, providing quality-of-service (QoS) to multi-class SUs with diverse delay requirements during handoff becomes a challenging task. In this paper, we have evolved a Markov-based analytical model to ascertain the gain in non-switching spectrum handoff scheme for multi-class SUs employing hybrid interweave-underlay spectrum access strategy. To satisfy the QoS requirements of the delay-sensitive traffic, we have analyzed the impact of hybrid spectrum access scheme for prioritized multi-class SUs traffic. The results show substantial improvement in spectrum utilization, average system throughput and extended data delivery time compared to conventional CRN using interweave only spectrum access. This demonstrates the suitability of the proposed scheme towards meeting QoS requirements of the delay-sensitive SU traffic while improving the overall performance for delay-tolerant SU traffic as well.

5.
Sensors (Basel) ; 18(1)2018 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-29316664

RESUMO

The energy-efficient and reliable delivery of data packets in resource constraint underwater wireless sensor networks (UWSNs) is one of the key considerations to enhance the network lifetime. The traditional re-transmissions approach consumes the node battery and increases the communication overhead, which results in congestion and affects the reliable data packet delivery in the network. To ensure the reliability and conserve the node battery, in this paper, we propose adaptive forwarding layer multipath power control routing protocol to reduce the energy dissipation, achieve the data reliability and avoid the energy hole problem. In order to achieve the reliability, tree based topology is exploited to direct multiple copies of the data packet towards the surface through cross nodes in the network. The energy dissipation is reduced by a substantial amount with the selection of low noise path between the source and the destination including the information of neighbors of the potential forwarder node. Extensive simulation results show that our proposed work outperforms the compared existing scheme in terms of energy efficiency and packet received ratio (PRR).

6.
Sensors (Basel) ; 17(1)2016 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-28036001

RESUMO

In an on-road environment, motor-engines severely disturb the wireless link of a sensor node, leading to high package loss rate, high delivery delay, and poor radio communication quality. The existing data delivery mechanisms, such as the ACK-based retransmission mechanism and window-based link quality estimation mechanism, could not handle these challenges well. To solve this challenge, we propose a Target-Prediction-based Link quality Estimation scheme (TPLE) to realize high quality data delivery in an on-road environment. To perform on-road link quality estimation, TPLE dynamically calculates the track of a nearby vehicle target and estimates target impact on wireless link. Based on the local estimation of link quality, TPLE schedules radio communication tasks effectively. Simulations indicate that our proposed TPLE scheme produces a 94% data delivery rate, its average retransmission number is around 0.8. Our conducted on-road data delivery experiments also indicated a similar result as the computer simulation.

7.
Sensors (Basel) ; 16(7)2016 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-27447644

RESUMO

Cognitive radio can significantly improve the spectrum efficiency, and spectrum handoff is considered as an important functionality to guarantee the quality of service (QoS) of primary users (PUs) and the continuity of data transmission of secondary users (SUs). In this paper, we propose an analytical framework based on a preemptive repeat identical (PRI) M/G/1 queuing network model to characterize spectrum handoff behaviors with general service time distribution of both primary and secondary connections, multiple interruptions and transmission delay resulting from the appearance of primary connections. Then, we derive the close-expression of the extended data delivery and the system sojourn time in both staying and changing scenarios. In addition, based on analysis of spectrum handoff behaviors resulting from multiple interruptions caused by the appearance of the primary connections, we investigate the traffic-adaptive policy, by which the considered SU will optimally adjust its handoff spectrum policy. Moreover, we investigate the admissible region and provide the reference for designing the admission control rule for the arriving secondary connection requests. Finally, simulation results verify that our proposed analytical framework is reasonable and can provide the reference for executing the optimal spectrum handoff strategy and designing the admission control rule for the SU in cognitive radio networks.

8.
Acta Crystallogr D Struct Biol ; 77(Pt 1): 126, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33404533

RESUMO

Two citations in the article by Sehnal et al. [(2020), Acta Cryst. D76, 1167-1173] are corrected.

9.
Sensors (Basel) ; 10(10): 9349-58, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-22163411

RESUMO

Power grids deal with the business of generation, transmission, and distribution of electric power. Current systems monitor basic electrical quantities such as voltage and current from major pole transformers using their temperature. We improve the current systems in order to gather and deliver the information of power qualities such as harmonics, voltage sags, and voltage swells. In the system, data delivery is not guaranteed for the case that a node is lost or the network is congested, because the system has in-line and multi-hop architecture. In this paper, we propose a reliable data delivery mechanism by modeling an optimal data delivery function by employing the neural network concept.


Assuntos
Redes de Comunicação de Computadores/instrumentação , Processamento Eletrônico de Dados/instrumentação , Processamento Eletrônico de Dados/organização & administração , Telemetria/instrumentação , Telemetria/métodos , Tecnologia sem Fio/instrumentação , Fontes de Energia Elétrica , Equipamentos e Provisões Elétricas , Reprodutibilidade dos Testes
10.
Acta Crystallogr D Struct Biol ; 76(Pt 12): 1167-1173, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33263322

RESUMO

Biomacromolecular structural data make up a vital and crucial scientific resource that has grown not only in terms of its amount but also in its size and complexity. Furthermore, these data are accompanied by large and increasing amounts of experimental data. Additionally, the macromolecular data are enriched with value-added annotations describing their biological, physicochemical and structural properties. Today, the scientific community requires fast and fully interactive web visualization to exploit this complex structural information. This article provides a survey of the available cutting-edge web services that address this challenge. Specifically, it focuses on data-delivery problems, discusses the visualization of a single structure, including experimental data and annotations, and concludes with a focus on the results of molecular-dynamics simulations and the visualization of structural ensembles.


Assuntos
Gráficos por Computador , Internet , Substâncias Macromoleculares/química , Software , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa