Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(21)2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36365804

RESUMO

The paper presents a novel data-embedding method based on the Periodic Haar Piecewise-Linear (PHL) transform. The theoretical background behind the PHL transform concept is introduced. The proposed watermarking method assumes embedding hidden information in the PHL transform domain using the luminance channel of the original image. The watermark is embedded by modifying the coefficients with relatively low values. The proposed method was verified based on the measurement of the visual quality of an image with a watermark with respect to the length of the embedded information. In addition, the bit error rate (BER) is also considered for different sizes of a watermark. Furthermore, a method for the detection of image manipulation is presented. The elaborated technique seems to be suitable for applications in digital signal and image processing where high imperceptibility and low BER are required, and information security is of high importance. In particular, this method can be applied in systems where the sensitive data is transmitted or stored and needs to be protected appropriately (e.g., in medical image processing).

2.
BMC Bioinformatics ; 22(1): 89, 2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33632116

RESUMO

BACKGROUND: Matrix factorization methods are linear models, with limited capability to model complex relations. In our work, we use tropical semiring to introduce non-linearity into matrix factorization models. We propose a method called Sparse Tropical Matrix Factorization (STMF) for the estimation of missing (unknown) values in sparse data. RESULTS: We evaluate the efficiency of the STMF method on both synthetic data and biological data in the form of gene expression measurements downloaded from The Cancer Genome Atlas (TCGA) database. Tests on unique synthetic data showed that STMF approximation achieves a higher correlation than non-negative matrix factorization (NMF), which is unable to recover patterns effectively. On real data, STMF outperforms NMF on six out of nine gene expression datasets. While NMF assumes normal distribution and tends toward the mean value, STMF can better fit to extreme values and distributions. CONCLUSION: STMF is the first work that uses tropical semiring on sparse data. We show that in certain cases semirings are useful because they consider the structure, which is different and simpler to understand than it is with standard linear algebra.


Assuntos
Algoritmos , Neoplasias , Expressão Gênica , Humanos , Neoplasias/genética
3.
Entropy (Basel) ; 22(4)2020 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33286165

RESUMO

Categorical data are ubiquitous in machine learning tasks, and the representation of categorical data plays an important role in the learning performance. The heterogeneous coupling relationships between features and feature values reflect the characteristics of the real-world categorical data which need to be captured in the representations. The paper proposes an enhanced categorical data embedding method, i.e., CDE++, which captures the heterogeneous feature value coupling relationships into the representations. Based on information theory and the hierarchical couplings defined in our previous work CDE (Categorical Data Embedding by learning hierarchical value coupling), CDE++ adopts mutual information and margin entropy to capture feature couplings and designs a hybrid clustering strategy to capture multiple types of feature value clusters. Moreover, Autoencoder is used to learn non-linear couplings between features and value clusters. The categorical data embeddings generated by CDE++ are low-dimensional numerical vectors which are directly applied to clustering and classification and achieve the best performance comparing with other categorical representation learning methods. Parameter sensitivity and scalability tests are also conducted to demonstrate the superiority of CDE++.

4.
Intell Med ; 3(2): 85-96, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36694623

RESUMO

After the outbreak of COVID-19, the interaction of infectious disease systems and social systems has challenged traditional infectious disease modeling methods. Starting from the research purpose and data, researchers improved the structure and data of the compartment model or used agents and artificial intelligence based models to solve epidemiological problems. In terms of modeling methods, the researchers use compartment subdivision, dynamic parameters, agent-based model methods, and artificial intelligence related methods. In terms of factors studied, the researchers studied 6 categories: human mobility, nonpharmaceutical interventions (NPIs), ages, medical resources, human response, and vaccine. The researchers completed the study of factors through modeling methods to quantitatively analyze the impact of social systems and put forward their suggestions for the future transmission status of infectious diseases and prevention and control strategies. This review started with a research structure of research purpose, factor, data, model, and conclusion. Focusing on the post-COVID-19 infectious disease prediction simulation research, this study summarized various improvement methods and analyzes matching improvements for various specific research purposes.

5.
Cancer Inform ; 21: 11769351221124205, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36187912

RESUMO

Introduction: Multi-omics data integration facilitates collecting richer understanding and perceptions than separate omics data. Various promising integrative approaches have been utilized to analyze multi-omics data for biomedical applications, including disease prediction and disease subtypes, biomarker prediction, and others. Methods: In this paper, we introduce a multi-omics data integration method that is constructed using the combination of gene similarity network (GSN) based on uniform manifold approximation and projection (UMAP) and convolutional neural networks (CNNs). The method utilizes UMAP to embed gene expression, DNA methylation, and copy number alteration (CNA) to a lower dimension creating two-dimensional RGB images. Gene expression is used as a reference to construct the GSN and then integrate other omics data with the gene expression for better prediction. We used CNNs to predict the Gleason score levels of prostate cancer patients and the tumor stage in breast cancer patients. Results: The model proposed near perfection with accuracy above 99% with all other performance measurements at the same level. The proposed model outperformed the state-of-art iSOM-GSN model that constructs the GSN map based on the self-organizing map. Conclusion: The results show that UMAP as an embedding technique can better integrate multi-omics maps into the prediction model than SOM. The proposed model can also be applied to build a multi-omics prediction model for other types of cancer.

6.
Multimed Tools Appl ; 80(9): 13121-13142, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33456316

RESUMO

With the rapid advancement in digital technologies, video rises to become one of the most effective communication tools that continues to gain popularity and importance. As a result, various proposals are put forward to manage videos, and one of them is data embedding. Essentially, data embedding inserts data into the video to serve a specific purpose, including proof of ownership via watermark, covert communication in steganography, and authentication via fragile watermark. However, most conventional methods embed data by using only one type of syntax element defined in the video coding standard, which may suffer from large bit rate overhead, quality degradation, or low payload. Therefore, this work aims to explore the combined use of multiple prediction syntax elements in SHVC for the purpose of data embedding. Specifically, the intra prediction mode, motion vector predictor, motion vector difference, merge mode and coding block structure are collectively manipulated to embed data. The experimental results demonstrate that, in comparison to the conventional single-venue data embedding methods, the combined use of prediction syntax elements can achieve higher payload while preserving the perceptual quality with minimal bit rate variation. In the best case scenario, a total of 556.1 kbps is embedded into the video sequence PartyScene with a drop of 0.15 dB in PSNR while experiencing a bit rate overhead of 7.4% when all prediction syntax elements are utilized altogether. A recommendation is then put forward to choose specific types of syntax element for data embedding based on the characteristics of the video.

7.
Heliyon ; 6(3): e03464, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32154419

RESUMO

In this digital era, transmitting data through a computer network has become common. Moreover, some applications have also been developed to do it. Nevertheless, users may not be aware of the security aspect of this data transmission, which can lead to disclosing this private message. In a case when a sensitive message is the object to transmit, a security mechanism should be applied. Data hiding is one of the methods introduced to work for this issue. In this algorithm, the message is embedded into the cover, such as an audio file, before being transmitted; on the other side, the recipient extracts it. However, the size of the message and the quality of the resulted stego data are still challenging. In this paper, we focus on these two problems by considering some factors: embedding space, embedding process, reducing, and smoothing steps. Firstly, the audio signal is discretized to obtain audio samples. Next, these samples are interpolated to provide spaces for hiding the secret. Considering that the quality of the generated stego audio is likely to drop, reducing and smoothing steps are designed. The experimental results show that this approach can improve the quality of the stego based on the specified payload capacity. That is, there is an increase in PSNR value of at least 10 dB, depending on the payload size and the methods.

8.
Healthc Technol Lett ; 1(2): 74-9, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26609382

RESUMO

E-medicine is a process to provide health care services to people using the Internet or any networking technology. In this Letter, a new idea is proposed to model the physical structure of the e-medicine system to better provide offline health care services. Smart cards are used to authenticate the user singly. A very unique technique is also suggested to verify the card owner's identity and to embed secret data to the card while providing patients' reports either at booths or at the e-medicine server system. The simulation results of card authentication and embedding procedure justify the proposed implementation.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa