RESUMO
This study enhances infrared communication security in nuclear power plants' secondary systems, addressing the risk of mechanical and cyber failures. A novel random address generator, employing an innovative S-box, was developed to secure IoT sensor data transmissions to gateway nodes, mitigating eavesdropping, interference, and replay attacks. We introduced a structured IR communication protocol, generating unique, encrypted addresses to prevent unauthorized access. Key-dependent S-boxes, based on a compound chaotic map system, significantly improved encryption, increasing data transmission randomness and uniqueness. Entropy analysis and reduced duplicated addresses confirmed the effectiveness of our method, with the Hash-CCM algorithm showing the highest entropy and fewest duplicates. Integrating advanced cryptographic techniques into IR systems significantly enhances nuclear power plants' security, contributing to the protection of critical infrastructure from cyber threats and ensuring operational integrity.
RESUMO
Protecting sensitive patient data, such as electrocardiogram (ECG) signals, during RF wireless transmission is essential due to the increasing demand for secure telemedicine communications. This paper presents an innovative chaotic-based encryption system designed to enhance the security and integrity of telemedicine data transmission. The proposed system utilizes a multi-scroll chaotic system for ECG signal encryption based on master-slave synchronization. The ECG signal is encrypted by a master system and securely transmitted to a remote location, where it is decrypted by a slave system using an extended state observer. Synchronization between the master and slave is achieved through the Lyapunov criteria, which ensures system stability. The system also supports Orthogonal Frequency Division Multiplexing (OFDM) and adaptive n-quadrature amplitude modulation (n-QAM) schemes to optimize signal discretization. Experimental validations with a custom transceiver scheme confirmed the system's effectiveness in preventing channel overlap during 2.5 GHz transmissions. Additionally, a commercial RF Power Amplifier (RF-PA) for LTE applications and a development board were integrated to monitor transmission quality. The proposed encryption system ensures robust and efficient RF transmission of ECG data, addressing critical challenges in the wireless communication of sensitive medical information. This approach demonstrates the potential for broader applications in modern telemedicine environments, providing a reliable and efficient solution for the secure transmission of healthcare data.
RESUMO
This research paper introduces a novel paradigm that synergizes innovative algorithms, namely efficient data encryption, the Quondam Signature Algorithm (QSA), and federated learning, to effectively counteract random attacks targeting Internet of Things (IoT) systems. The incorporation of federated learning not only fosters continuous learning but also upholds data privacy, bolsters security measures, and provides a robust defence mechanism against evolving threats. The Quondam Signature Algorithm (QSA) emerges as a formidable solution, adept at mitigating vulnerabilities linked to man-in-the-middle attacks. Remarkably, the QSA algorithm achieves noteworthy cost savings in IoT communication by optimizing communication bit requirements. By seamlessly integrating federated learning, IoT systems attain the ability to harmoniously aggregate and analyse data from an array of devices while zealously guarding data privacy. The decentralized approach of federated learning orchestrates local machine-learning model training on individual devices, subsequently amalgamating these models into a global one. Such a mechanism not only nurtures data privacy but also empowers the system to harness diverse data sources, enhancing its analytical capabilities. A thorough comparative analysis scrutinizes varied cost-in-communication schemes, meticulously weighing both encryption and federated learning facets. The proposed approach shines by virtue of its optimization of time complexity through the synergy of offline phase computations and online phase signature generation, hinged on an elliptic curve digital signature algorithm-based online/offline scheme. In contrast, the Slow Block Move (SBM) scheme lags behind, necessitating over 25 rounds, 1500 signature generations, and an equal number of verifications. The proposed scheme, fortified by its marriage of federated learning and efficient encryption techniques, emerges as an embodiment of improved efficiency and reduced communication costs. The culmination of this research underscores the intrinsic benefits of the proposed approach: marked reduction in communication costs, elevated analytical prowess, and heightened resilience against the spectrum of attacks that IoT systems confront.
RESUMO
Following an in-depth analysis of one-dimensional chaos, a randomized selective autoencoder neural network (AENN), and coupled chaotic mapping are proposed to address the short period and low complexity of one-dimensional chaos. An improved method is proposed for synchronizing keys during the transmission of one-time pad encryption, which can greatly reduce the usage of channel resources. Then, a joint encryption model based on randomized AENN and a new chaotic coupling mapping is proposed. The performance analysis concludes that the encryption model possesses a huge key space and high sensitivity, and achieves the effect of one-time pad encryption. Experimental results show that this model is a high-security joint encryption model that saves secure channel resources and has the ability to resist common attacks, such as exhaustive attacks, selective plaintext attacks, and statistical attacks.
RESUMO
The use of sequence-defined digital polymers for data storage and encryption has received increasing attention due to their precision structures similar to natural biomacromolecules (e.g., DNA) but increased stability. However, the rapid development of sequencing techniques raises the concern of information leakage. Herein, dendritic quaternary-encoded oligourethanes bearing a photoresponsive trigger, self-immolative backbones, and a mass spectrometry tag of PEG dendron have been developed for data encryption. Although the sequence information in linear analogs can be readily deciphered by mass spectrometry, sequencing of dendritic oligourethanes cannot be achieved by either primary MS or tandem MS/MS owing to the unique spatial conformation. Intriguingly, the fragmentation pathways of a quaternary dendrimer under MS/MS conditions can be converted to 2772-bit 2D matrices with ≈1.98×1087 permutations, serving as high-strength encryption keys for highly reliable data encryption.
Assuntos
Segurança Computacional , Espectrometria de Massas em Tandem , Polímeros , DNA , Armazenamento e Recuperação da InformaçãoRESUMO
DNA (Deoxyribonucleic Acid) Cryptography has revolutionized information security by combining rigorous biological and mathematical concepts to encode original information in terms of a DNA sequence. Such schemes are crucially dependent on corresponding DNA-based cryptographic keys. However, owing to the redundancy or observable patterns, some of the keys are rendered weak as they are prone to intrusions. This paper proposes a Genetic Algorithm inspired method to strengthen weak keys obtained from Random DNA-based Key Generators instead of completely discarding them. Fitness functions and the application of genetic operators have been chosen and modified to suit DNA cryptography fundamentals in contrast to fitness functions for traditional cryptographic schemes. The crossover and mutation rates are reducing with each new population as more keys are passing fitness tests and need not be strengthened. Moreover, with the increasing size of the initial key population, the key space is getting highly exhaustive and less prone to Brute Force attacks. The paper demonstrates that out of an initial 25 × 25 population of DNA Keys, 14 keys are rendered weak. Complete results and calculations of how each weak key can be strengthened by generating 4 new populations are illustrated. The analysis of the proposed scheme for different initial populations shows that a maximum of 8 new populations has to be generated to strengthen all 500 weak keys of a 500 × 500 initial population.
Assuntos
Algoritmos , Projetos de Pesquisa , DNA/genéticaRESUMO
The wearable healthcare equipment is primarily designed to alert patients of any specific health conditions or to act as a useful tool for treatment or follow-up. With the growth of technologies and connectivity, the security of these devices has become a growing concern. The lack of security awareness amongst novice users and the risk of several intermediary attacks for accessing health information severely endangers the use of IoT-enabled healthcare systems. In this paper, a blockchain-based secure data storage system is proposed along with a user authentication and health status prediction system. Firstly, this work utilizes reversed public-private keys combined Rivest-Shamir-Adleman (RP2-RSA) algorithm for providing security. Secondly, feature selection is completed by employing the correlation factor-induced salp swarm optimization algorithm (CF-SSOA). Finally, health status classification is performed using advanced weight initialization adapted SignReLU activation function-based artificial neural network (ASR-ANN) which classifies the status as normal and abnormal. Meanwhile, the abnormal measures are stored in the corresponding patient blockchain. Here, blockchain technology is used to store medical data securely for further analysis. The proposed model has achieved an accuracy of 95.893% and is validated by comparing it with other baseline techniques. On the security front, the proposed RP2-RSA attains a 96.123% security level.
Assuntos
Blockchain , Humanos , Redes Neurais de Computação , Algoritmos , Tecnologia , Atenção à Saúde , Segurança ComputacionalRESUMO
Strong cryptographic algorithms are essential for the protection of stored and transmitted data throughout the world. This publication discusses the development of Federal Information Processing Standards Publication (FIPS) 197, which specifies a cryptographic algorithm known as the Advanced Encryption Standard (AES). The AES was the result of a cooperative multiyear effort involving the U.S. government, industry, and the academic community. Several difficult problems that had to be resolved during the standard's development are discussed, and the eventual solutions are presented. The author writes from his viewpoint as former leader of the Security Technology Group and later as acting director of the Computer Security Division at the National Institute of Standards and Technology, where he was responsible for the AES development.
RESUMO
An organic crystal of 4,4'-bis(N-carbazolyl)-1,1'-biphenyl (pCBP) exhibits time-dependent afterglow color from blue to orange over 1â s. Both experimental and computational data confirm that the color evolution results from well-separated, long-persistent thermally activated delayed fluorescence (TADF) and room-temperature phosphorescence (RTP) with different but comparable decay rates. TADF is enabled by a small S1 -T1 energy gap of 0.7â kcal mol-1 . The good separation of TADF and RTP is due to a 11.8â kcal mol-1 difference in the S0 energies of the S1 and T1 structures, indicating that apart from the excited-state properties, tuning the ground state is also important for luminescence properties. This afterglow color evolution of pCBP allows its applications in anticounterfeiting and data encryption with high security levels.
RESUMO
In AES, the total time taken by the architecture while implementing in low power and high-speed circuit is the most important thing that to be considered. Also in AES, implementing S-Boxes consumes the major part of the total time consumed by the entire architecture. In this research paper, we propose a very low-power and high efficient S-Box circuit architecture: a multi-stage modified version of PPRM architecture over composite fields. In this modified S box design, only AND and Hazard transparent XOR gates are used. Because of this architecture dynamic hazards which form the main aspect of power consumption in S box gets eliminated. A low propagation delay of 4.58 ns and occupies 120 slices in the xilinx FPGA device xc6vlx75t-3ff784, while the low propagation delay and slice area is 5.552 ns and 120 respectively for the conventional PPRM architecture. This new proposed architecture is used to protect the mammographic images from being unauthorized access.
Assuntos
Algoritmos , Segurança Computacional/normas , Mamografia , Humanos , Fatores de TempoRESUMO
A wireless blood pressure measurement system was designed to facilitate the measurement of the patient's blood pressure and to transmit the measured data safely and reliably. Through PDA, radio frequency identification technology (RFID) and bluetooth technology, the function of reading patients' information and statistics and analysis of blood pressure, heart rate data was realized. The IDEA and RSA joint algorithms were used to encrypt the patients' data and the key of the IDEA algorithm to ensure the security of the patient' data. The test results showed that the system had high accuracy of measurement data, safe and reliable transmission, and improved the nurses' work efficiency.
Assuntos
Algoritmos , Monitores de Pressão Arterial , Segurança Computacional , Dispositivo de Identificação por Radiofrequência , Determinação da Pressão Arterial , Humanos , Tecnologia sem FioRESUMO
Image encryption is crucial for protecting image privacy and ensuring security. Encrypting large batches of images of different types and sizes simultaneously with losslessly decryption is often necessary. This paper proposes an optical asymmetric multi-image encryption algorithm to meet these demands. First, plaintext images are converted into one-dimensional pixels and blocked. Image information, image count, and pixels are stored in corresponding areas and reassembled. Unit equal-modulus vector decomposition (UEMD) and phase truncation generate the ciphertext image and keys. The decrypted image is reconstructed from the ciphertext's information and quantity areas. Asymmetric encryption with different keys for encryption and decryption enhances security, while UEMD ensures lossless recovery and robustness. Experiments demonstrate the proposed algorithm's efficiency in encrypting multiple grayscale and color images of varying sizes, providing high security, and lossless recovery. This technology offers superior protection for sensitive image data, enhancing encryption system practicality and digital security.
RESUMO
Cryptography is crucial in protecting sensitive information and ensuring secure transactions in a time when data security and privacy are major concerns. Traditional cryptography techniques, which depend on mathematical algorithms and secret keys, have historically protected against data breaches and illegal access. With the advent of quantum computers, traditional cryptography techniques are at risk. In this work, we present a cryptography idea using logical phi-bits, which are classical analogues of quantum bits (qubits) and are supported by driven acoustic metamaterials. The state of phi-bits displays superpositions similar to quantum bits, with complex amplitudes and phases. We present a representation of the state vector of single and multi-phi-bit systems. The state vector of multiple phi-bits system lies in a complex exponentially scaling Hilbert space and is used to encode information or messages. By changing the driving conditions of the metamaterial, the information can be encrypted with exceptional security and efficiency. We illustrate experimentally the practicality and effectiveness of encoding and encryption of a message using a 5 phi-bits system and emphasize the scalability of this approach to an N phi-bits system with the same processing time.
RESUMO
In view of the insecurity of encode information storage based on fluorescence switch single-stage encryption, a fluorescent hydrogel for multistage data security encryption were proposed, named as polyvinyl alcohol/dialdehyde cellulose nanofibrils/carbon quantum dots hydrogel. Herein, the interpenetrating network was formed by chemically crosslinking between polyvinyl alcohol (PVA) and dialdehyde cellulose nanofibrils (DACNF). Additionally, nitrogen-doped carbon quantum dots (CDs) synthesized by one-step hydrothermal method were introduced into the above hydrogel system by hydrogen bonds. The resultant fluorescent hydrogels possessed high stretchability up to 530 %, good strength of 0.96 MPa, Fe3+-responsive fluorescence quenching, fluorescence recovery triggered by ascorbic acid and borax-triggered shape memory. Moreover, various complex 3D hydrogel geometries were fabricated by folding/assembling 2D fluorescent hydrogel sheets, extending data encryption capability from 2D plane to 3D space. More remarkably, the 3D data encryption-erasing process of fluorescent hydrogel was realized by the strategy of alternating treatment of Fe3+ solution and ascorbic acid solution. This work provided a facile and general strategy for constructing high security important information encryption and protection.
Assuntos
Aldeídos , Hidrogéis , Álcool de Polivinil , Ácido Ascórbico , Carbono , CorantesRESUMO
Memristors are considered one of the most promising new-generation memory technologies due to their high integration density, fast read/write speeds, and ultra-low power consumption. Natural biomaterials have attracted interest in integrated circuits and electronics because of their environmental friendliness, sustainability, low cost, and excellent biocompatibility. In this study, a sustainable biomemristor with Ag/mugwort:PVDF/ITO structure was prepared using spin-coating and magnetron sputtering methods, which exhibited excellent durability, significant resistance switching (RS) behavior and unidirectional conduction properties when three metals were used as top electrode. By studying the conductivity mechanism of the device, a charge conduction model was established by the combination of F-N tunneling, redox, and complexation reaction. Finally, the novel logic gate circuits were constructed using the as-prepared memristor, and further memristor based encryption circuit using 3-8 decoder was innovatively designed, which can realize uniform rule encryption and decryption of medical information for data and medical images. Therefore, this work realizes the integration of memristor with traditional electronic technology and expands the applications of sustainable biomemristors in digital circuits, data encryption, and medical image security.
RESUMO
In recent years, transmitting medical data has been a regular process. Although strong, safe, and dependable encryption techniques are necessary for medical data, cryptography is largely a computational process. The research presents a selective encryption approach for the transfer of sensitive data. This study proposes a novel technique for selecting the optimal keys to offer more security to medical data. Initially, the medical data is encrypted using the hybrid AES-DES technique. To make an efficient encryption method, the most optimal keys are selected utilising an improved Cheetah optimisation algorithm (ICO). Finally, the keys are optimised, and the input medical data is safely kept in the cloud system according to the established model. As a result, the proposed approach utilises the Python tool to evaluate the results. The simulation results show that the proposed method outperforms others in terms of encryption time 96 s, decryption time 92 s, memory usage (16), and latency (0.006).
Assuntos
Algoritmos , Computação em Nuvem , Segurança Computacional , HumanosRESUMO
Genomic researchers increasingly utilize commercial cloud service providers (CSPs) to manage data and analytics needs. CSPs allow researchers to grow Information Technology (IT) infrastructure on demand to overcome bottlenecks when combining large datasets. However, without adequate security controls, the risk of unauthorized access may be higher for data stored on the cloud. Additionally, regulators are mandating data access patterns and specific security protocols for the storage and use of genomic data. While CSP provides tools for security and regulatory compliance, building the necessary controls required for cloud solutions is not trivial. Research Assets Provisioning and Tracking Online Repository (RAPTOR) by the Genome Institute of Singapore is a cloud-native genomics data repository and analytics platform that implements a "five-safes" framework to provide security and governance controls to data contributors and users, leveraging CSP for sharing and analysis of genomic datasets without the risk of security breaches or running afoul of regulations.
RESUMO
Microdroplets made from chiral liquid crystals (CLCs) can display reflective structural colors. However, the small area of reflection and their isotropic shape limit their performance. Here, Janus microdroplets are synthesized through phase separation between CLCs and silicone oil. The as-synthesized Janus microdroplets show primary structural colors with ≈14 times larger area compared to their spherical counterparts at a specific orientation; the orientation and thus the colored/transparent states can be switched by applying a magnetic field. The color of the Janus microdroplets can be tuned ranging from red to violet by varying the concentration of the chiral dopant in the CLC phase. Due to the density difference between the two phases, the Janus microdroplets prefer to orientate the silicone oil side up vertically, enabling the self-recoverable structural color after distortion. The Janus microdroplets can be dispersed in aqueous media to track the configuration and speed of magnetic objects. They can also be patterned as multiplexed labels for data encryption. The magnetic field-responsive Janus CLC microdroplets presented here offer new insights to generate and switch reflective colors with high color saturation. It also paves the way for broader applications of CLCs, including anti-counterfeiting, data encryption, display, and untethered speed sensors.
RESUMO
Probing the rigidity change of microenvironments via tracking embedded molecular fluorophore emissions represents a robust approach to monitor various polymer microstructural evolutions and biomolecular events with a high spatiotemporal resolution. However, reported fluorophores exclusively blueshift their emissions (termed as "rigidochromism") or merely alter intensities upon rigidification, suffering from inferior sensitivities, low-contrast outputs, and attenuated biocompatibilities. Here, phenanthridine-fused triazatruxene fluorophores (PTFs) with pronounced bathochromic emission (up to 135 nm) toward rigidifying media at a low loading of 5 ppm without sacrificing the quantum yields and lifetime are developed. PTFs effectively interact with polymeric matrixes through polar-π interactions and form charge-transfer complexes, resulting to a remarkable fluorescent color change from blue to red-orange over matrix rigidifying. Such a unique anti-rigidochromism enables a highly sensitive rigidity detection (i.e., a subtle polymer molecular-weight change (as low as 1000 Da vs up to 10 kDa for conventional probes) can result to obvious emission color changes). PTFs are able to noninvasively detect polymerization kinetics and in situ optically report polymer degradations. The broadly (nearly full-spectrum) tunable emission and the efficient coupling between anti-rigidochromism and polymer hierarchical structures/topologies render fluorescence with controlled wavelength and chirality, leading to an unprecedented free-volume-based data encryption and anti-counterfeiting technology with a superhigh security level.
RESUMO
Based on degradable pH-responsive hydrogel, we report on an enhanced three-dimensional data encryption security technique in which a pH value is used for information manipulation. Featuring three types of states upon the pH value variation, namely, shrinkage, expansion and degradation, the hydrogel renders a limited pH value window as the "key" for information decryption. The pH-dependent shrinkage-to-expansion conversion of the hydrogel leads to a threshold pH value for retrieving the recorded data, whilst the degradability of the hydrogel, which can be tuned by adjusting the composition ratio of PEGDA/AAc, gives rise to a second threshold pH value for irreversibly sabotaging the retrieved data. Pre-doping silver ions in the hydrogel facilitates explicit recording and reading of binary data in forms of three-dimensional silver patterns through photoreduction and scattering, respectively, with a femtosecond laser. By accurately matching the vertical spacing of the encoded silver nanopatterns with the diffraction-limited focal depth of the decryption microscope, we can tune the pH value to encrypt and retrieve information recorded in layers and set a critical pH value to smash encoded information, which proves a highly secured 3D data encoding protocol. This strategy can effectively enrich data encryption techniques, vastly enhancing data security within unattained chemical dimensions.