Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Med Phys ; 51(3): 1674-1686, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38224324

RESUMO

BACKGROUND: Cone beam computed tomography (CBCT) is widely used in many medical fields. However, conventional CBCT circular scans suffer from cone beam (CB) artifacts that limit the quality and reliability of the reconstructed images due to incomplete data. PURPOSE: Saddle trajectories in theory might be able to improve the CBCT image quality by providing a larger region with complete data. Therefore, we investigated the feasibility and performance of saddle trajectory CBCT scans and compared them to circular trajectory scans. METHODS: We performed circular and saddle trajectory scans using a novel robotic CBCT scanner (Mobile ImagingRing (IRm); medPhoton, Salzburg, Austria). For the saddle trajectory, the gantry executed yaw motion up to ± 10 ∘ $\pm 10^{\circ }$ using motorized wheels driving on the floor. An infrared (IR) tracking device with reflective markers was used for online geometric calibration correction (mainly floor unevenness). All images were reconstructed using penalized least-squares minimization with the conjugate gradient algorithm from RTK with 0.5 × 0.5 × 0.5 mm 3 $0.5 \times 0.5\times 0.5 \text{ mm}^3$ voxel size. A disk phantom and an Alderson phantom were scanned to assess the image quality. Results were correlated with the local incompleteness value represented by tan ( ψ ) $\tan (\psi)$ , which was calculated at each voxel as a function of the source trajectory and the voxel's 3D coordinates. We assessed the magnitude of CB artifacts using the full width half maximum (FWHM) of each disk profile in the axial center of the reconstructed images. Spatial resolution was also quantified by the modulation transfer function at 10% (MTF10). RESULTS: When using the saddle trajectory, the region without CB artifacts was increased from 43 to 190 mm in the SI direction compared to the circular trajectory. This region coincided with low values for tan ( ψ ) $\tan (\psi)$ . When tan ( ψ ) $\tan (\psi)$ was larger than 0.02, we found there was a linear relationship between the FWHM and tan ( ψ ) $\tan (\psi)$ . For the saddle, IR tracking allowed the increase of MTF10 from 0.37 to 0.98 lp/mm. CONCLUSIONS: We achieved saddle trajectory CBCT scans with a novel CBCT system combined with IR tracking. The results show that the saddle trajectory provides a larger region with reliable reconstruction compared to the circular trajectory. The proposed method can be used to evaluate other non-circular trajectories.


Assuntos
Procedimentos Cirúrgicos Robóticos , Tomografia Computadorizada de Feixe Cônico Espiral , Tomografia Computadorizada de Feixe Cônico Espiral/métodos , Artefatos , Reprodutibilidade dos Testes , Tomografia Computadorizada de Feixe Cônico/métodos , Algoritmos , Imagens de Fantasmas , Processamento de Imagem Assistida por Computador/métodos
2.
Brain Sci ; 12(5)2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35624922

RESUMO

Diabetic retinopathy (DR) is a visual obstacle caused by diabetic disease, which forms because of long-standing diabetes mellitus, which damages the retinal blood vessels. This disease is considered one of the principal causes of sightlessness and accounts for more than 158 million cases all over the world. Since early detection and classification could diminish the visual impairment, it is significant to develop an automated DR diagnosis method. Although deep learning models provide automatic feature extraction and classification, training such models from scratch requires a larger annotated dataset. The availability of annotated training datasets is considered a core issue for implementing deep learning in the classification of medical images. The models based on transfer learning are widely adopted by the researchers to overcome annotated data insufficiency problems and computational overhead. In the proposed study, features are extracted from fundus images using the pre-trained network VGGNet and combined with the concept of transfer learning to improve classification performance. To deal with data insufficiency and unbalancing problems, we employed various data augmentation operations differently on each grade of DR. The results of the experiment indicate that the proposed framework (which is evaluated on the benchmark dataset) outperformed advanced methods in terms of accurateness. Our technique, in combination with handcrafted features, could be used to improve classification accuracy.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa