Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Plant J ; 118(6): 2020-2036, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38525679

RESUMO

Photoperiod insensitivity (auto-flowering) in drug-type Cannabis sativa circumvents the need for short day (SD) flowering requirements making outdoor cultivation in high latitudes possible. However, the benefits of photoperiod insensitivity are counterbalanced by low cannabinoid content and poor flower quality in auto-flowering genotypes. Despite recent studies in cannabis flowering, a mechanistic understanding of photoperiod insensitivity is still lacking. We used a combination of genome-wide association study and genetic fine-mapping to identify the genetic cause of auto-flowering in cannabis. We then used gene expression analyses and transient transformation assays to characterize flowering time control. Herein, we identify a splice site mutation within circadian clock gene PSEUDO-RESPONSE REGULATOR 37 (CsPRR37) in auto-flowering cannabis. We show that CsPRR37 represses FT expression and its circadian oscillations transition to a less repressive state during SD as compared to long days (LD). We identify several key circadian clock genes whose expression is altered in auto-flowering cannabis, particularly under non-inductive LD. Research into the pervasiveness of this mutation and others affecting flowering time will help elucidate cannabis domestication history and advance cannabis breeding toward a more sustainable outdoor cultivation system.


Assuntos
Cannabis , Flores , Regulação da Expressão Gênica de Plantas , Mutação , Fotoperíodo , Cannabis/genética , Cannabis/crescimento & desenvolvimento , Cannabis/fisiologia , Relógios Circadianos , Ritmo Circadiano , Flores/genética , Flores/crescimento & desenvolvimento , Flores/fisiologia , Estudo de Associação Genômica Ampla , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sítios de Splice de RNA
2.
Proc Biol Sci ; 291(2026): 20241336, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38981527

RESUMO

Environmental conditions like temperature and photoperiod can strongly shape organisms' growth and development. For many ectotherms with complex life cycles, global change will cause their offspring to experience warmer conditions and earlier-season photoperiods, two variables that can induce conflicting responses. We experimentally manipulated photoperiod and temperature during gray treefrog (Hyla versicolor) larval development to examine effects at metamorphosis and during short (10-day) and long (56-day) periods post-metamorphosis. Both early- and late-season photoperiods (April and August) decreased age and size at metamorphosis relative to the average-season (June) photoperiod, while warmer temperatures decreased age but increased size at metamorphosis. Warmer larval temperatures reduced short-term juvenile growth but had no long-term effect. Conversely, photoperiod had no short-term carryover effect, but juveniles from early- and late-season larval photoperiods had lower long-term growth rates than juveniles from the average-season photoperiod. Similar responses to early- and late-season photoperiods may be due to reduced total daylight compared with average-season photoperiods. However, juveniles from late-season photoperiods selected cooler temperatures than early-season juveniles, suggesting that not all effects of photoperiod were due to total light exposure. Our results indicate that despite both temperature and photoperiod affecting metamorphosis, the long-term effects of photoperiod may be much stronger than those of temperature.


Assuntos
Anuros , Larva , Metamorfose Biológica , Fotoperíodo , Estações do Ano , Temperatura , Animais , Larva/crescimento & desenvolvimento , Larva/fisiologia , Anuros/fisiologia , Anuros/crescimento & desenvolvimento , Tamanho Corporal
3.
Psychol Med ; 54(9): 2264-2272, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38634486

RESUMO

BACKGROUND: Daylength and the rates of changes in daylength have been associated with seasonal fluctuations in psychiatric symptoms and in cognition and mood in healthy adults. However, variations in human brain glucose metabolism in concordance with seasonal changes remain under explored. METHODS: In this cross-sectional study, we examined seasonal effects on brain glucose metabolism, which we measured using 18F-fluorodeoxyglucose-PET in 97 healthy participants. To maximize the sensitivity of regional effects, we computed relative metabolic measures by normalizing the regional measures to white matter metabolism. Additionally, we explored the role of rest-activity rhythms/sleep-wake activity measured with actigraphy in the seasonal variations of regional brain metabolic activity. RESULTS: We found that seasonal variations of cerebral glucose metabolism differed across brain regions. Glucose metabolism in prefrontal regions increased with longer daylength and with greater day-to-day increases in daylength. The cuneus and olfactory bulb had the maximum and minimum metabolic values around the summer and winter solstice respectively (positively associated with daylength), whereas the temporal lobe, brainstem, and postcentral cortex showed maximum and minimum metabolic values around the spring and autumn equinoxes, respectively (positively associated with faster daylength gain). Longer daylength was associated with greater amplitude and robustness of diurnal activity rhythms suggesting circadian involvement. CONCLUSIONS: The current findings advance our knowledge of seasonal patterns in a key indicator of brain function relevant for mood and cognition. These data could inform treatment interventions for psychiatric symptoms that peak at specific times of the year.


Assuntos
Encéfalo , Glucose , Tomografia por Emissão de Pósitrons , Estações do Ano , Humanos , Masculino , Feminino , Adulto , Estudos Transversais , Glucose/metabolismo , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagem , Fluordesoxiglucose F18 , Adulto Jovem , Actigrafia , Pessoa de Meia-Idade , Fotoperíodo
4.
J Reprod Dev ; 70(1): 35-41, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38171909

RESUMO

This study sought to examine the impact of negative photoperiod on the incidence of multiple ovulations and pregnancies in dairy cattle. The study population consisted of 5,373 pregnant cows in their third or greater lactation that experienced their first post-partum pregnancy after spontaneous estrus. The positive photoperiod (increasing day-length) extends from December 22 to June 21, whereas the negative photoperiod (decreasing day-length) extends from June 22 to December 21. The odds ratios (ORs) for multiple ovulations and pregnancies in cows that became pregnant during the negative photoperiod and the remaining cows that became pregnant during the positive photoperiod were 1.4 and 1.3 (P < 0.0001), respectively. The ORs for cows that became pregnant ≥ 90 days in milk and the remaining cows that became pregnant < 90 days in milk were 4.3 and 4.1 (P < 0.0001), respectively. No significant differences were detected in the monthly rates of multiple ovulations or pregnancies during positive and negative photoperiods. Thus, the present study demonstrates that the ovarian function in cows is related to changes in day-length, with decreasing day-length being associated with greater multiple ovulation and pregnancy rates. The present study also shows that positive and negative photoperiods exhibit different trends. The results of this study are consistent with a growing body of work demonstrating the effects of photoperiod patterns on the reproductive physiology of cows, with clear implications for twin pregnancy prevention.


Assuntos
Ovulação , Fotoperíodo , Humanos , Gravidez , Feminino , Bovinos , Animais , Lactação/fisiologia , Período Pós-Parto , Leite
5.
BMC Plant Biol ; 23(1): 483, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37817085

RESUMO

BACKGROUND: Though many abiotic factors are constantly changing, the photoperiod is a predictable factor that enables plants to time many physiological responses. This timing is regulated by the circadian clock, yet little is known about how the clock adapts to the differences in photoperiod between mid-latitudes and high latitudes. The primary objective of this study was to compare how clock gene expression is modified in four woodland strawberry (Fragaria vesca L.) accessions originating from two different populations in Italy (IT1: Tenno, Italy, 45°N, IT4: Salorno, Italy, 46°N) and two in Northern Norway (NOR2: Alta, Norway, 69°N, NOR13: Indre Nordnes, Norway 69°N) when grown under simulated daylength conditions of an Arctic or mid-latitude photoperiod. The second objective was to investigate whether population origin or the difference in photoperiod influenced phytohormone accumulation. RESULTS: The Arctic photoperiod induced lower expression in IT4 and NOR13 for six clock genes (FvLHY, FvRVE8, FvPRR9, FvPRR7, FvPRR5, and FvLUX), in IT1 for three genes (FvLHY, FvPRR9, and FvPRR5) and in NOR2 for one gene (FvPRR9). Free-running rhythms for FvLHY in IT1 and IT4 were higher after the Arctic photoperiod, while the free-running rhythm for FvLUX in IT4 was higher after the mid-latitude photoperiod. IT1 showed significantly higher expression of FvLHY and FvPRR9 than all other accessions, as well as significantly higher expression of the circadian regulated phytohormone, abscisic acid (ABA), but low levels of salicylic acid (SA). NOR13 had significantly higher expression of FvRVE8, FvTOC1, and FvLUX than all other accessions. NOR2 had extremely low levels of auxin (IAA) and high levels of the jasmonate catabolite, hydroxyjasmonic acid (OH-JA). CONCLUSIONS: Our study shows that circadian rhythms in Fragaria vesca are driven by both the experienced photoperiod and genetic factors, while phytohormone levels are primarily determined by specific accessions' genetic factors rather than the experienced photoperiod.


Assuntos
Relógios Circadianos , Fragaria , Fotoperíodo , Fragaria/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Ritmo Circadiano/genética , Aclimatação
6.
J Exp Bot ; 74(14): 3923-3932, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37021554

RESUMO

The description of long photoperiod sensitivity in wheat and barley is a cause of confusion for researchers working with these crops, usually accustomed to free exchange of physiological and genetic knowledge of such similar crops. Indeed, wheat and barley scientists customarily quote studies of either crop species when researching one of them. Among their numerous similarities, the main gene controlling the long photoperiod sensitivity is the same in both crops (PPD1; PPD-H1 in barley and PPD-D1 in hexaploid wheat). However, the photoperiod responses are different: (i) the main dominant allele inducing shorter time to anthesis is the insensitive allele in wheat (Ppd-D1a) but the sensitive allele in barley (Ppd-H1) (i.e. sensitivity to photoperiod produces opposite effects on time to heading in wheat and barley); (ii) the main 'insensitive' allele in wheat, Ppd-D1a, does confer insensitivity, whilst that of barley reduces the sensitivity but still responds to photoperiod. The different behaviour of PPD1 genes in wheat and barley is put in a common framework based on the similarities and differences of the molecular bases of their mutations, which include polymorphism at gene expression levels, copy number variation, and sequence of coding regions. This common perspective sheds light on a source of confusion for cereal researchers, and prompts us to recommend accounting for the photoperiod sensitivity status of the plant materials when conducting research on genetic control of phenology. Finally, we provide advice to facilitate the management of natural PPD1 diversity in breeding programmes and suggest targets for further modification through gene editing, based on mutual knowledge on the two crops.


Assuntos
Hordeum , Fotoperíodo , Triticum/genética , Hordeum/genética , Variações do Número de Cópias de DNA , Melhoramento Vegetal , Flores/genética , Alelos
7.
Int J Mol Sci ; 24(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37298521

RESUMO

In soybeans (Glycine max (L.) Merr.), their growth periods, DSF (days of sowing-to-flowering), and DFM (days of flowering-to-maturity) are determined by their required accumulative day-length (ADL) and active temperature (AAT). A sample of 354 soybean varieties from five world eco-regions was tested in four seasons in Nanjing, China. The ADL and AAT of DSF and DFM were calculated from daily day-lengths and temperatures provided by the Nanjing Meteorological Bureau. The improved restricted two-stage multi-locus genome-wide association study using gene-allele sequences as markers (coded GASM-RTM-GWAS) was performed. (i) For DSF and its related ADLDSF and AATDSF, 130-141 genes with 384-406 alleles were explored, and for DFM and its related ADLDFM and AATDFM, 124-135 genes with 362-384 alleles were explored, in a total of six gene-allele systems. DSF shared more ADL and AAT contributions than DFM. (ii) Comparisons between the eco-region gene-allele submatrices indicated that the genetic adaptation from the origin to the geographic sub-regions was characterized by allele emergence (mutation), while genetic expansion from primary maturity group (MG)-sets to early/late MG-sets featured allele exclusion (selection) without allele emergence in addition to inheritance (migration). (iii) Optimal crosses with transgressive segregations in both directions were predicted and recommended for breeding purposes, indicating that allele recombination in soybean is an important evolutionary drive. (iv) Genes of the six traits were mostly trait-specific involved in four categories of 10 groups of biological functions. GASM-RTM-GWAS showed potential in detecting directly causal genes with their alleles, identifying differential trait evolutionary drives, predicting recombination breeding potentials, and revealing population gene networks.


Assuntos
Estudo de Associação Genômica Ampla , Glycine max , Glycine max/genética , Alelos , Desequilíbrio de Ligação , Locos de Características Quantitativas , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único
8.
Int J Mol Sci ; 23(4)2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35216246

RESUMO

Improvement of crop climate resilience will require an understanding of whole-plant adaptation to specific local environments. This review places features of plant form and function related to photosynthetic productivity, as well as associated gene-expression patterns, into the context of the adaptation of Arabidopsis thaliana ecotypes to local environments with different climates in Sweden and Italy. The growth of plants under common cool conditions resulted in a proportionally greater emphasis on the maintenance of photosynthetic activity in the Swedish ecotype. This is compared to a greater emphasis on downregulation of light-harvesting antenna size and upregulation of a host of antioxidant enzymes in the Italian ecotype under these conditions. This differential response is discussed in the context of the climatic patterns of the ecotypes' native habitats with substantial opportunity for photosynthetic productivity under mild temperatures in Italy but not in Sweden. The Swedish ecotype's response is likened to pushing forward at full speed with productivity under low temperature versus the Italian ecotype's response of staying safe from harm (maintaining redox homeostasis) while letting productivity decline when temperatures are transiently cold. It is concluded that either strategy can offer directions for the development of climate-resilient crops for specific locations of cultivation.


Assuntos
Aclimatação/fisiologia , Arabidopsis/fisiologia , Temperatura Baixa , Ecótipo , Fotossíntese/fisiologia
9.
New Phytol ; 230(2): 462-474, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33421152

RESUMO

Climate change causes both temporal (e.g. advancing spring phenology) and geographic (e.g. range expansion poleward) species shifts, which affect the photoperiod experienced at critical developmental stages ('experienced photoperiod'). As photoperiod is a common trigger of seasonal biological responses - affecting woody plant spring phenology in 87% of reviewed studies that manipulated photoperiod - shifts in experienced photoperiod may have important implications for future plant distributions and fitness. However, photoperiod has not been a focus of climate change forecasting to date, especially for early-season ('spring') events, often assumed to be driven by temperature. Synthesizing published studies, we find that impacts on experienced photoperiod from temporal shifts could be orders of magnitude larger than from spatial shifts (1.6 h of change for expected temporal vs 1 min for latitudinal shifts). Incorporating these effects into forecasts is possible by leveraging existing experimental data; we show that results from growth chamber experiments on woody plants often have data relevant for climate change impacts, and suggest that shifts in experienced photoperiod may increasingly constrain responses to additional warming. Further, combining modeling approaches and empirical work on when, where and how much photoperiod affects phenology could rapidly advance our understanding and predictions of future spatio-temporal shifts from climate change.


Assuntos
Mudança Climática , Fotoperíodo , Plantas , Estações do Ano , Temperatura
10.
Plant Cell Environ ; 44(8): 2565-2579, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33878205

RESUMO

Response to photoperiod is of major importance in crop production. It defines the adaptation of plants to local environments. Quinoa is a short-day plant which had been domesticated in the Andeans regions. We wanted to understand the adaptation to long-day conditions by studying orthologues of two major flowering time regulators of Arabidopsis, FLOWERING LOCUS T (FT) and CONSTANS (CO) in quinoa accessions with contrasting photoperiod response. By searching the quinoa reference genome sequence, we identified 24 FT and six CO homologs. CqFT genes displayed remarkably different expression patterns between long- and short-day conditions, whereas the influence of the photoperiod on CqCOL expressions was moderate. Cultivation of 276 quinoa accessions under short- and long-day conditions revealed great differences in photoperiod sensitivity. After sequencing their genomes, we identified large sequence variations in 12 flowering time genes. We found non-random distribution of haplotypes across accessions from different geographical origins, highlighting the role of CqFT and CqCOL genes in the adaptation to different day-length conditions. We identified five haplotypes causing early flowering under long days. This study provides assets for quinoa breeding because superior haplotypes can be assembled in a predictive breeding approach to produce well-adapted early flowering lines under long-day photoperiods.


Assuntos
Adaptação Biológica/genética , Chenopodium quinoa/fisiologia , Flores/fisiologia , Haplótipos , Proteínas de Plantas/genética , Chenopodium quinoa/genética , Flores/genética , Regulação da Expressão Gênica de Plantas , Variação Genética , Fotoperíodo , Filogenia
11.
Glob Chang Biol ; 27(12): 2914-2927, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33651464

RESUMO

Vegetation phenology in spring has substantially advanced under climate warming, consequently shifting the seasonality of ecosystem process and altering biosphere-atmosphere feedbacks. However, whether and to what extent photoperiod (i.e., daylength) affects the phenological advancement is unclear, leading to large uncertainties in projecting future phenological changes. Here we examined the photoperiod effect on spring phenology at a regional scale using in situ observation of six deciduous tree species from the Pan European Phenological Network during 1980-2016. We disentangled the photoperiod effect from the temperature effect (i.e., forcing and chilling) by utilizing the unique topography of the northern Alps of Europe (i.e., varying daylength but uniform temperature distribution across latitudes) and examining phenological changes across latitudes. We found prominent photoperiod-induced shifts in spring leaf-out across latitudes (up to 1.7 days per latitudinal degree). Photoperiod regulates spring phenology by delaying early leaf-out and advancing late leaf-out caused by temperature variations. Based on these findings, we proposed two phenological models that consider the photoperiod effect through different mechanisms and compared them with a chilling model. We found that photoperiod regulation would slow down the advance in spring leaf-out under projected climate warming and thus mitigate the increasing frost risk in spring that deciduous forests will face in the future. Our findings identify photoperiod as a critical but understudied factor influencing spring phenology, suggesting that the responses of terrestrial ecosystem processes to climate warming are likely to be overestimated without adequately considering the photoperiod effect.


Assuntos
Fotoperíodo , Árvores , Mudança Climática , Ecossistema , Europa (Continente) , Folhas de Planta , Estações do Ano , Temperatura
12.
Ann Bot ; 128(1): 97-113, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-33821947

RESUMO

BACKGROUND AND AIMS: Daylength determines flowering dates. However, questions remain regarding flowering dates in the natural environment, such as the synchronous flowering of plants sown simultaneously at highly contrasting latitudes. The daily change in sunrise and sunset times is the cue for the flowering of trees and for the synchronization of moulting in birds at the equator. Sunrise and sunset also synchronize the cell circadian clock, which is involved in the regulation of flowering. The goal of this study was to update the photoperiodism model with knowledge acquired since its conception. METHODS: A large dataset was gathered, including four 2-year series of monthly sowings of 28 sorghum varieties in Mali and two 1-year series of monthly sowings of eight rice varieties in the Philippines to compare with previously published monthly sowings in Japan and Malaysia, and data from sorghum breeders in France, Nicaragua and Colombia. An additive linear model of the duration in days to panicle initiation (PI) and flowering time using daylength and daily changes in sunrise and sunset times was implemented. KEY RESULTS: Simultaneous with the phyllochron, the duration to PI of field crops acclimated to the mean temperature at seedling emergence within the usual range of mean cropping temperatures. A unique additive linear model combining daylength and daily changes in sunrise and sunset hours was accurately fitted for any type of response in the duration to PI to the sowing date without any temperature input. Once calibrated on a complete and an incomplete monthly sowing series at two tropical latitudes, the model accurately predicted the duration to PI of the concerned varieties from the equatorial to the temperate zone. CONCLUSIONS: Including the daily changes in sunrise and sunset times in the updated photoperiodism model largely improved its accuracy at the latitude of each experiment. More research is needed to ascertain its multi-latitudinal accuracy, especially at latitudes close to the equator.


Assuntos
Oryza , Sorghum , Aclimatação , Flores , Humanos , Fotoperíodo , Temperatura
13.
Int J Biometeorol ; 65(8): 1399-1414, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33834291

RESUMO

Spermatogenesis is a temperature-dependent process, and high summer temperatures have been linked to lower sperm concentration and count. However, reports describing the association between other meteorological variables and semen quality are scarce. This study evaluated the association between semen quality and temperature, humidity, pressure, apparent temperature (AT), temperature-humidity index (THI), simplified wet-bulb global temperature (sWBGT), and sunshine duration. Semen samples were obtained at the Laboratorio de Andrología y Reproducción (LAR, Argentina), from men undergoing routine andrology examination (n=11657) and computer-assisted sperm analysis (n=4705) following WHO 2010 criteria. Meteorological variables readings were obtained from the Sistema Meteorológico Nacional. Sperm quality parameters were negatively affected in summer when compared to winter. Additionally, there was a significant decrease in sperm kinematics between winter and spring. Branch and bound variable selection followed by multiple regression analysis revealed a significant association between semen quality and meteorological variables. Specifically, changes in sunshine duration and humidity reinforced the prognosis of semen quality. Highest/lowest sunshine duration and humidity quantiles resulted in decreased sperm concentration, count, motility, vitality and membrane competence, nuclear maturity, and sperm kinematics associated to highest sunshine duration and lowest humidity. Findings from this report highlight the relevance of environmental studies for predicting alterations in male reproductive health associated to variations in meteorological variables, especially considering the current climate changes around the planet due to global warming and its consequences for human health.


Assuntos
Análise do Sêmen , Motilidade dos Espermatozoides , Humanos , Masculino , Estudos Retrospectivos , Contagem de Espermatozoides , Espermatozoides
14.
Bull Entomol Res ; 110(5): 588-596, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32160932

RESUMO

The European cherry fruit fly, Rhagoletis cerasi (Diptera: Tephritidae), is a univoltine species that undergoes obligatory summer-winter diapause at pupal stage in the soil (2-5 cm) beneath host trees. To study the effects of photoperiod and relative humidity on diapause termination and post-winter developmental duration of R. cerasi, pupae collected from Dossenheim (Germany) were exposed to different photoperiod or relative humidity regimes during a chilling period ranging from 2 to 8.5 months. Specifically, pupae were exposed to four photoperiod regimes: (a) light conditions (24L:00D), (b) dark conditions (00L:24D), (c) short photoperiod (08L:16D) and (d) long photoperiod (16L:08D), as well as to three relative humidity regimes: (a) low (40% RH), (b) medium (60% RH) and (c) high (70-80% RH). Data revealed that relative humidity is not a significant predictor of diapause termination, but it affects the post-winter developmental period. Higher relative humidity promotes post-winter pupae development. On the other hand, photoperiod significantly affected both diapause termination and post-winter development of R. cerasi pupae. Light conditions (24L:00D) accelerate adult emergence, particularly for females. Regardless of the photoperiod (24L:00D, 00L:24D, 08L:16D), rates of adult emergence were high (>75%) for chilling intervals longer than 6.5 months. Nonetheless, exposure to a long day photoperiod (16L:08D), during chilling, dramatically reduced the proportion of adult emergence following 6 months exposure to chilling. Our findings broaden the understanding of factors regulating diapause responses in European cherry fruit fly, local adaptation and synchronization of adult emergence with the ripening period of major hosts.


Assuntos
Diapausa de Inseto/fisiologia , Umidade , Fotoperíodo , Tephritidae/crescimento & desenvolvimento , Animais , Feminino , Masculino , Pupa/crescimento & desenvolvimento , Estações do Ano , Temperatura , Tephritidae/fisiologia
15.
BMC Genomics ; 20(1): 2, 2019 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-30606119

RESUMO

BACKGROUND: The Tibetan highland fish, Gymnocypris przewalskii, migrates from Lake Qinghai to its spawning grounds every summer. This seasonal reproduction is critically regulated by intrinsic and extrinsic signals. However, the molecular mechanisms that process environmental oscillations to initiate the seasonal mating are largely unknown. RESULTS: A transcriptomic analysis was conducted on the brain and gonad of male and female G. przewalskii in reproductive and nonreproductive seasons. We obtained 2034, 760, 1158 and 17,856 differentially expressed genes between the reproductively active and dormant female brain, male brain, ovary and testis. Among these genes, DIO2 was upregulated in the reproductively active brain and gonad of both males and females. Neuroactive ligand-receptor genes were activated in male and female brain. Functional enrichment analysis suggested that retinol metabolism was uniquely stimulated in reproductively active males. Genes involved in GnRH signaling and sex hormone synthesis exhibited higher expression levels in brain and gonad during the reproductive season. A co-expression network classified all the genes into 9 modules. The network pinpointed CDC42 as the hub gene that connected the pathways in responsible for modulating reproduction in G. przewalskii. Meanwhile, the sex pheromone receptor gene prostaglandin receptor was identified to link to multiple endocrine receptors, such as GnRHR2 in the network. CONCLUSIONS: The current study profiled transcriptomic variations between reproductively active and dormant fish, highlighting the potential regulatory mechanisms of seasonal reproduction in G. przewalskii. Our data suggested that the seasonal regulation of reproduction in G. przewalskii was controlled by the external stimulation of photoperiodic variations. The activated transcription of neuroendocrine and sex hormone synthesis genes contributed to seasonal reproduction regulation in G. przewalskii, which was presumably influenced by the increased day-length during the breeding season.


Assuntos
Cyprinidae/genética , Evolução Molecular , Filogenia , Transcriptoma/genética , Animais , Cyprinidae/classificação , Feminino , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/genética , Lagos , Masculino , Reprodução/genética , Estações do Ano , Tibet
16.
J Exp Bot ; 70(9): 2449-2462, 2019 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-30785619

RESUMO

Accurate predictions of the timing of physiological stages and the development rate are crucial for predicting crop performance under field conditions. Plant development is controlled by the leaf appearance rate (LAR) and our understanding of how LAR responds to environmental factors is still limited. Here, we tested the hypothesis that carbon availability may account for the effects of irradiance, photoperiod, atmospheric CO2 concentration, and ontogeny on LAR. We conducted three experiments in growth chambers to quantify and disentangle these effects for both winter and spring wheat cultivars. Variations of LAR observed between environmental scenarios were well explained by the supply/demand ratio for carbon, quantified using the photothermal quotient. We therefore developed an ecophysiological model based on the photothermal quotient that accounts for the effects of temperature, irradiance, photoperiod, and ontogeny on LAR. Comparisons of observed leaf stages and LAR with simulations from our model, from a linear thermal-time model, and from a segmented linear thermal-time model corrected for sowing date showed that our model can simulate the observed changes in LAR in the field with the lowest error. Our findings demonstrate that a hypothesis-driven approach that incorporates more physiology in specific processes of crop models can increase their predictive power under variable environments.


Assuntos
Carbono/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Triticum/crescimento & desenvolvimento , Triticum/metabolismo , Modelos Biológicos , Fotoperíodo , Temperatura
17.
Glob Chang Biol ; 25(7): 2410-2418, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30927554

RESUMO

Global warming has led to substantially earlier spring leaf-out in temperate-zone deciduous trees. The interactive effects of temperature and daylength underlying this warming response remain unclear. However, they need to be accurately represented by earth system models to improve projections of the carbon and energy balances of temperate forests and the associated feedbacks to the Earth's climate system. We studied the control of leaf-out by daylength and temperature using data from six tree species across 2,377 European phenological network (www.pep725.eu), each with at least 30 years of observations. We found that, in addition to and independent of the known effect of chilling, daylength correlates negatively with the heat requirement for leaf-out in all studied species. In warm springs when leaf-out is early, days are short and the heat requirement is higher than in an average spring, which mitigates the warming-induced advancement of leaf-out and protects the tree against precocious leaf-out and the associated risks of late frosts. In contrast, longer-than-average daylength (in cold springs when leaf-out is late) reduces the heat requirement for leaf-out, ensuring that trees do not leaf-out too late and miss out on large amounts of solar energy. These results provide the first large-scale empirical evidence of a widespread daylength effect on the temperature sensitivity of leaf-out phenology in temperate deciduous trees.


Assuntos
Folhas de Planta , Árvores , Clima , Florestas , Estações do Ano , Temperatura
18.
Ann Bot ; 124(1): 91-102, 2019 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-31321402

RESUMO

BACKGROUND AND AIMS: Photoperiod contains information about the progress of seasons. Plants use the changing photoperiod as a cue for the correct timing of important life history events, including flowering. Here the effect of photoperiod on flowering in four Arabidopsis lyrata populations originating from different latitudes was studied, as well as expression levels of candidate genes for governing the between-population differences. METHODS: Flowering of plants from four A. lyrata populations was studied in three different photoperiods after vernalization. Flowering development was separated into three steps: flower primordia formation, inflorescence shoot elongation and opening of the first flower. Circadian expression rhythms of the A. lyrata homologues of GIGANTEA (GI), FLAVIN-BINDING, KELCH REPEAT, F-BOX 1 (FKF1), CONSTANS (CO) and FLOWERING LOCUS T (FT) were studied in three of the populations in the intermediate (14 h) photoperiod treatment. KEY RESULTS: Most plants in all populations formed visible flower primordia during vernalization. Further inflorescence development after vernalization was strongly inhibited by short days in the northern European population (latitude 61°N), only slightly in the central European population (49°N) and not at all in the North American populations (36°N and 42°N). In the 14 h daylength, where all plants from the three southernmost populations but only 60 % of the northernmost population flowered, the circadian expression rhythm of the A. lyrata FT was only detected in the southern populations, suggesting differentiation in the critical daylength for activation of the long-day pathway. However, circadian expression rhythms of A. lyrata GI, FKF1 and CO were similar between populations. CONCLUSIONS: The results indicate that in A. lyrata, transition to flowering can occur through pathways independent of long days, but elongation of inflorescences is photoperiodically regulated.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Flores , Regulação da Expressão Gênica de Plantas , Inflorescência , Fotoperíodo
19.
Eur J Neurosci ; 48(8): 2718-2727, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-28921823

RESUMO

The suprachiasmatic nucleus (SCN) is a collection of about 10 000 neurons, each of which functions as a circadian clock with slightly different periods and phases, that work in concert with form and maintain the master circadian clock for the organism. The diversity among neurons confers on the SCN the ability to robustly encode both the 24-h light pattern as well as the seasonal time. Cluster synchronization brings the different neurons into line and reduces the large population to essentially two oscillators, coordinated by a macroscopic network motif of asymmetric repulsive-attractive coupling. We recount the steps leading to this simplification and rigorously examine the two-oscillator case by seeking an analytical solution. Through these steps, we identify physiologically relevant parameters that shape the behaviour of the SCN network and delineate its ability to store past details of seasonal variation in photoperiod.


Assuntos
Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Fotoperíodo , Estações do Ano , Núcleo Supraquiasmático/fisiologia , Animais , Humanos , Rede Nervosa , Neurônios/fisiologia , Núcleo Supraquiasmático/citologia
20.
New Phytol ; 219(4): 1353-1362, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29870050

RESUMO

Accurate predictions of spring plant phenology with climate change are critical for projections of growing seasons, plant communities and a number of ecosystem services, including carbon storage. Progress towards prediction, however, has been slow because the major cues known to drive phenology - temperature (including winter chilling and spring forcing) and photoperiod - generally covary in nature and may interact, making accurate predictions of plant responses to climate change complex and nonlinear. Alternatively, recent work suggests many species may be dominated by one cue, which would make predictions much simpler. Here, we manipulated all three cues across 28 woody species from two North American forests. All species responded to all cues examined. Chilling exerted a strong effect, especially on budburst (-15.8 d), with responses to forcing and photoperiod greatest for leafout (-19.1 and -11.2 d, respectively). Interactions between chilling and forcing suggest that each cue may compensate somewhat for the other. Cues varied across species, leading to staggered leafout within each community and supporting the idea that phenology is a critical aspect of species' temporal niches. Our results suggest that predicting the spring phenology of communities will be difficult, as all species we studied could have complex, nonlinear responses to future warming.


Assuntos
Florestas , Fotoperíodo , Folhas de Planta/fisiologia , Estações do Ano , Temperatura , Congelamento
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa