Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Brief Bioinform ; 22(5)2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-33589928

RESUMO

This article describes some use case studies and self-assessments of FAIR status of de.NBI services to illustrate the challenges and requirements for the definition of the needs of adhering to the FAIR (findable, accessible, interoperable and reusable) data principles in a large distributed bioinformatics infrastructure. We address the challenge of heterogeneity of wet lab technologies, data, metadata, software, computational workflows and the levels of implementation and monitoring of FAIR principles within the different bioinformatics sub-disciplines joint in de.NBI. On the one hand, this broad service landscape and the excellent network of experts are a strong basis for the development of useful research data management plans. On the other hand, the large number of tools and techniques maintained by distributed teams renders FAIR compliance challenging.


Assuntos
Gerenciamento de Dados/métodos , Metadados , Redes Neurais de Computação , Proteômica/métodos , Software , Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Cooperação Internacional , Fenótipo , Plantas/genética , Proteoma , Autoavaliação (Psicologia) , Fluxo de Trabalho
2.
Brief Bioinform ; 20(2): 370-374, 2019 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-28430873

RESUMO

The German Network for Bioinformatics Infrastructure (de.NBI) is a national initiative funded by the German Federal Ministry of Education and Research (BMBF). The mission of de.NBI is (i) to provide high-quality bioinformatics services to users in basic and applied life sciences research from academia, industry and biomedicine; (ii) to offer bioinformatics training to users in Germany and Europe through a wide range of workshops and courses; and (iii) to foster the cooperation of the German bioinformatics community with international network structures such as the European life-sciences Infrastructure for biological Information (ELIXIR). The network was launched by the BMBF in March 2015 and now includes 40 service projects operated by 30 project partners that are organized in eight service centers. The de.NBI staff develops further and maintains almost 100 bioinformatics services for the human, plant and microbial research fields and provides comprehensive training courses to support users with different expertise levels in bioinformatics. In the future, de.NBI will expand its activities to the European level, as the de.NBI consortium was assigned by the BMBF to establish and run the German node of ELIXIR.


Assuntos
Pesquisa Biomédica , Biologia Computacional/métodos , Curadoria de Dados/métodos , Microbiota , Plantas/genética , Algoritmos , Alemanha , Humanos
3.
Brief Bioinform ; 20(4): 1215-1221, 2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-29092005

RESUMO

Sustainable noncommercial bioinformatics infrastructures are a prerequisite to use and take advantage of the potential of big data analysis for research and economy. Consequently, funders, universities and institutes as well as users ask for a transparent value model for the tools and services offered. In this article, a generally applicable lightweight method is described by which bioinformatics infrastructure projects can estimate the value of tools and services offered without determining exactly the total costs of ownership. Five representative scenarios for value estimation from a rough estimation to a detailed breakdown of costs are presented. To account for the diversity in bioinformatics applications and services, the notion of service-specific 'service provision units' is introduced together with the factors influencing them and the main underlying assumptions for these 'value influencing factors'. Special attention is given on how to handle personnel costs and indirect costs such as electricity. Four examples are presented for the calculation of the value of tools and services provided by the German Network for Bioinformatics Infrastructure (de.NBI): one for tool usage, one for (Web-based) database analyses, one for consulting services and one for bioinformatics training events. Finally, from the discussed values, the costs of direct funding and the costs of payment of services by funded projects are calculated and compared.


Assuntos
Biologia Computacional/economia , Biologia Computacional/métodos , Software/economia , Big Data/economia , Biologia Computacional/educação , Consultores , Custos e Análise de Custo , Arquitetura de Instituições de Saúde/economia , Humanos , Serviços de Informação/economia , Modelos Econômicos , Navegador/economia
4.
F1000Res ; 8: 842, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31354949

RESUMO

The academic de.NBI Cloud offers compute resources for life science research in Germany.  At the beginning of 2017, de.NBI Cloud started to implement a federated cloud consisting of five compute centers, with the aim of acting as one resource to their users. A federated cloud introduces multiple challenges, such as a central access and project management point, a unified account across all cloud sites and an interchangeable project setup across the federation. In order to implement the federation concept, de.NBI Cloud integrated with the ELIXIR authentication and authorization infrastructure system (ELIXIR AAI) and in particular Perun, the identity and access management system of ELIXIR. The integration solves the mentioned challenges and represents a backbone, connecting five compute centers which are based on OpenStack and a web portal for accessing the federation.This article explains the steps taken and software components implemented for setting up a federated cloud based on the collaboration between de.NBI Cloud and ELIXIR AAI. Furthermore, the setup and components that are described are generic and can therefore be used for other upcoming or existing federated OpenStack clouds in Europe.


Assuntos
Disciplinas das Ciências Biológicas , Software , Alemanha
5.
F1000Res ; 82019.
Artigo em Inglês | MEDLINE | ID: mdl-33163154

RESUMO

The German Network for Bioinformatics Infrastructure (de.NBI) is a national and academic infrastructure funded by the German Federal Ministry of Education and Research (BMBF). The de.NBI provides (i) service, (ii) training, and (iii) cloud computing to users in life sciences research and biomedicine in Germany and Europe and (iv) fosters the cooperation of the German bioinformatics community with international network structures. The de.NBI members also run the German node (ELIXIR-DE) within the European ELIXIR infrastructure. The de.NBI / ELIXIR-DE training platform, also known as special interest group 3 (SIG 3) 'Training & Education', coordinates the bioinformatics training of de.NBI and the German ELIXIR node. The network provides a high-quality, coherent, timely, and impactful training program across its eight service centers. Life scientists learn how to handle and analyze biological big data more effectively by applying tools, standards and compute services provided by de.NBI. Since 2015, more than 300 training courses were carried out with about 6,000 participants and these courses received recommendation rates of almost 90% (status as of July 2020). In addition to face-to-face training courses, online training was introduced on the de.NBI website in 2016 and guidelines for the preparation of e-learning material were established in 2018. In 2016, ELIXIR-DE joined the ELIXIR training platform. Here, the de.NBI / ELIXIR-DE training platform collaborates with ELIXIR in training activities, advertising training courses via TeSS and discussions on the exchange of data for training events essential for quality assessment on both the technical and administrative levels. The de.NBI training program trained thousands of scientists from Germany and beyond in many different areas of bioinformatics.


Assuntos
Biologia Computacional/educação , Europa (Continente) , Alemanha , Humanos
6.
J Biotechnol ; 261: 76-84, 2017 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-28554830

RESUMO

The importance of RNA-based regulation is becoming more and more evident. Genome-wide sequencing efforts have shown that the majority of the DNA in eukaryotic genomes is transcribed. Advanced high-throughput techniques like CLIP for the genome-wide detection of RNA-protein interactions have shown that post-transcriptional regulation by RNA-binding proteins matches the complexity of transcriptional regulation. The need for a specialized and integrated analysis of RNA-based data has led to the foundation of the RNA Bioinformatics Center (RBC) within the German Network of Bioinformatics Infrastructure (de.NBI). This paper describes the tools, services and databases provided by the RBC, and shows example applications. Furthermore, we have setup an RNA workbench within the Galaxy framework. For an easy dissemination, we offer a virtualized version of Galaxy (via Galaxy Docker) enabling other groups to use our RNA workbench in a very simple way.


Assuntos
Biologia Computacional/métodos , Bases de Dados Genéticas , RNA/genética , Software , Sequenciamento de Nucleotídeos em Larga Escala/métodos
7.
J Biotechnol ; 261: 70-75, 2017 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-28757289

RESUMO

In large scale biological experiments, like high-throughput or high-content cellular screening, the amount and the complexity of images to be analyzed are steadily increasing. To handle and process these images, well defined image processing and analysis steps need to be performed by applying dedicated workflows. Multiple software tools have emerged with the aim to facilitate creation of such workflows by integrating existing methods, tools, and routines, and by adapting them to different applications and questions, as well as making them reusable and interchangeable. In this review, we describe workflow systems for the integration of microscopy image analysis techniques with focus on KNIME and Galaxy.


Assuntos
Biologia Computacional , Técnicas Citológicas , Processamento de Imagem Assistida por Computador , Microscopia , Fenótipo , Software , Fluxo de Trabalho
8.
J Biotechnol ; 261: 63-69, 2017 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-28625679

RESUMO

Genetic screens are powerful tools to identify components that make up biological systems. Perturbations introduced by methods such as RNA interference (RNAi) or CRISPR/Cas9-mediated genome editing lead to biological phenotypes that can be examined to understand the molecular function of genes in the cell. Over the years, many of such experiments have been conducted providing a wealth of knowledge about genotype-to-phenotype relationships. These data are a rich source of information and it is in a common interest to make them available in a simplified and integrated format. Thus, an important challenge is that genetic screening data can be stored in databases in standardized ways, allowing users to gain new biological insights through data mining and integrated analyses. Here, we provide an overview of available phenotype databases for human cells. We review in detail two databases for high-throughput screens, GenomeRNAi and GenomeCRISPR, and describe how these resources are integrated into the German Network for Bioinformatics Infrastructure de.NBI as part of the European infrastructure for life-science information ELIXIR.


Assuntos
Biologia Computacional , Bases de Dados Genéticas , Testes Genéticos , Técnicas Citológicas , Humanos , Fenótipo
9.
J Biotechnol ; 261: 116-125, 2017 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-28606611

RESUMO

The analysis of high-throughput mass spectrometry-based proteomics data must address the specific challenges of this technology. To this end, the comprehensive proteomics workflow offered by the de.NBI service center BioInfra.Prot provides indispensable components for the computational and statistical analysis of this kind of data. These components include tools and methods for spectrum identification and protein inference, protein quantification, expression analysis as well as data standardization and data publication. All particular methods of the workflow which address these tasks are state-of-the-art or cutting edge. As has been shown in previous publications, each of these methods is adequate to solve its specific task and gives competitive results. However, the methods included in the workflow are continuously reviewed, updated and improved to adapt to new scientific developments. All of these particular components and methods are available as stand-alone BioInfra.Prot services or as a complete workflow. Since BioInfra.Prot provides manifold fast communication channels to get access to all components of the workflow (e.g., via the BioInfra.Prot ticket system: bioinfraprot@rub.de) users can easily benefit from this service and get support by experts.


Assuntos
Proteômica , Humanos , Espectrometria de Massas , Software , Fluxo de Trabalho
10.
J Biotechnol ; 261: 10-23, 2017 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-28823476

RESUMO

Metagenomics has proven to be one of the most important research fields for microbial ecology during the last decade. Starting from 16S rRNA marker gene analysis for the characterization of community compositions to whole metagenome shotgun sequencing which additionally allows for functional analysis, metagenomics has been applied in a wide spectrum of research areas. The cost reduction paired with the increase in the amount of data due to the advent of next-generation sequencing led to a rapidly growing demand for bioinformatic software in metagenomics. By now, a large number of tools that can be used to analyze metagenomic datasets has been developed. The Bielefeld-Gießen center for microbial bioinformatics as part of the German Network for Bioinformatics Infrastructure bundles and imparts expert knowledge in the analysis of metagenomic datasets, especially in research on microbial communities involved in anaerobic digestion residing in biogas reactors. In this review, we give an overview of the field of metagenomics, introduce into important bioinformatic tools and possible workflows, accompanied by application examples of biogas surveys successfully conducted at the Center for Biotechnology of Bielefeld University.


Assuntos
Biocombustíveis/microbiologia , Biologia Computacional/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Metagenoma/genética , Metagenômica/métodos , Anaerobiose
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa