Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 194
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(14): e2317444121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38527208

RESUMO

Dust loading in West and South Asia has been a major environmental issue due to its negative effects on air quality, food security, energy supply and public health, as well as on regional and global weather and climate. Yet a robust understanding of its recent changes and future projection remains unclear. On the basis of several high-quality remote sensing products, we detect a consistently decreasing trend of dust loading in West and South Asia over the last two decades. In contrast to previous studies emphasizing the role of local land use changes, here, we attribute the regional dust decline to the continuous intensification of Arctic amplification driven by anthropogenic global warming. Arctic amplification results in anomalous mid-latitude atmospheric circulation, particularly a deepened trough stretching from West Siberia to Northeast India, which inhibits both dust emissions and their downstream transports. Large ensemble climate model simulations further support the dominant role of greenhouse gases induced Arctic amplification in modulating dust loading over West and South Asia. Future projections under different emission scenarios imply potential adverse effects of carbon neutrality in leading to higher regional dust loading and thus highlight the importance of stronger anti-desertification counter-actions such as reforestation and irrigation management.

2.
Proc Natl Acad Sci U S A ; 121(5): e2312832120, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38252836

RESUMO

Following a sustainable development pathway designed to keep warming below 2 °C will benefit human health. We quantify premature deaths attributable to fine particulate matter (PM2.5) air pollution and heat exposures for China, South Asia, and the United States using projections from multiple climate models under high- and low-emission scenarios. Projected changes in premature deaths are typically dominated by population aging, primarily reflecting increased longevity leading to greater sensitivity to environmental risks. Changes in PM2.5 exposure typically have small impacts on premature deaths under a high-emission scenario but provide substantial benefits under a low-emission scenario. PM2.5-attributable deaths increase in South Asia throughout the century under both scenarios but shift to decreases by late century in China, and US values decrease throughout the century. In contrast, heat exposure increases under both scenarios and combines with population aging to drive projected increases in deaths in all countries. Despite population aging, combined PM2.5- and heat-related deaths decrease under the low-emission scenario by ~2.4 million per year by midcentury and ~2.9 million by century's end, with ~3% and ~21% of these reductions from heat, respectively. Intermodel variations in exposure projections generally lead to uncertainties of <40% except for US and China heat impacts. Health benefits of low emissions are larger from reduced heat exposure than improved air quality by the late 2090s in the United States. In contrast, in South and East Asia, the PM2.5-related benefits are largest throughout the century, and their valuation exceeds the cost of decarbonization, especially in China, over the next 30 y.


Assuntos
Poluição do Ar , Mortalidade Prematura , Humanos , Estados Unidos/epidemiologia , Temperatura Alta , China/epidemiologia , Ásia Meridional , Material Particulado
3.
Environ Sci Technol ; 58(3): 1518-1530, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38151825

RESUMO

The transformation of the global power structure caused by the carbon neutrality goal will promote copper consumption. It is crucial to explore the decarbonization pathways of the copper industry to help fulfill greenhouse gas (GHG) emission reduction targets. This study utilized material flow analysis and life cycle assessment methods to investigate 12 different subscenarios based on international trade, circular economy, technology evolution, and environmental market factors. Policy combination scenario is employed to reveal the mechanism of decarbonization. The results show that refined copper consumption in China is expected to increase by 62.3% in 2060 compared to 2020. The GHG emissions of China's copper industry will reach 9.1 million tonnes (Mt) CO2e in 2060, technology evolution and environmental market are crucial for realizing carbon neutrality goal of this industry, accounting for 26.4 and 47.2% of emissions reductions, respectively, between 2020 and 2060. International trade and circular economy play important roles in the high-quality carbon peaking stage; however, imported copper and domestic secondary copper will constitute the basic supply of copper resources in China in the long run, and the comparative advantages of them will gradually weaken. Policy combination scenario can achieve the incentive synergy effect, with GHG reduced to 0.5 Mt CO2e in 2060. The enhanced application of policies such as material substitution and carbon emission trading will further promote industry to achieve net-zero GHG emission. We suggest regulating the industry's structure based on the international systemic circulation pattern and accelerating the construction of a green circular chain in the short term to achieve sustainable copper supply and high-quality carbon peaking. Promoting a high-quality technology development strategy and enhancing the environmental markets are recommended in the long term to achieve carbon neutrality.


Assuntos
Efeito Estufa , Gases de Efeito Estufa , Cobre , Carbono , Comércio , Internacionalidade , China , Dióxido de Carbono/análise
4.
Environ Sci Technol ; 58(11): 4957-4967, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38446013

RESUMO

Electrification and clean hydrogen are promising low-carbon options for decarbonizing industrial process heat, which is an essential target for reducing sector-wide emissions. However, industrial processes with heat demand vary significantly across industries in terms of temperature requirements, capacities, and equipment, making it challenging to determine applications for low-carbon technologies that are technically and economically feasible. In this analysis, we develop a framework for evaluating life cycle emissions, water use, and cost impacts of electric and clean hydrogen process heat technologies and apply it in several case studies for plastics and petrochemical manufacturing industries in the United States. Our results show that industrial heat pumps could reduce emissions by 12-17% in a typical poly(vinyl chloride) (PVC) facility in certain locations currently, compared to conventional natural gas combustion, and that other electric technologies in PVC and ethylene production could reduce emissions by nearly 90% with a sufficiently decarbonized electric grid. Life cycle water use increases significantly in all low-carbon technology cases. The levelized cost of heat of viable low-carbon technologies ranges from 15 to 100% higher than conventional heating systems, primarily due to energy costs. We discuss results in the context of relevant policies that could be useful to manufacturing facilities and policymakers for aiding the transition to low-carbon process heat technologies.


Assuntos
Cloreto de Vinil , Estados Unidos , Temperatura Alta , Carbono , Instalações Industriais e de Manufatura , Etilenos , Hidrogênio , Água
5.
Environ Sci Technol ; 58(9): 4137-4144, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38373231

RESUMO

The transportation sector is the largest emitter of greenhouse gas emissions (GHGs) in the United States. Increased use of public transit and electrification of public transit could help reduce these emissions. The electrification of public transit systems could also reduce air pollutant emissions in densely populated areas, where air pollution disproportionally burdens vulnerable communities with high health impacts and associated social costs. We analyze the life cycle emissions of transit buses powered by electricity, diesel, gasoline, and compressed natural gas and model GHGs and air pollutants mitigated for a transition to a fully electric U.S. public transit bus fleet using transit agency-level data. The electrification of the U.S. bus fleet would reduce several conventional air pollutants and has the potential to reduce transit bus GHGs by 33-65% within the next 14 years depending on how quickly the transition is made and how quickly the electricity grid decarbonizes. A levelized cost of driving analysis shows that with falling capital costs and an increase in annual passenger-kilometers of battery electric buses, the technology could reach levelized cost parity with diesel buses when electric bus capital costs fall below about $670 000 per bus.


Assuntos
Poluentes Atmosféricos , Gases de Efeito Estufa , Estados Unidos , Emissões de Veículos/análise , Gases de Efeito Estufa/análise , Poluentes Atmosféricos/análise , Veículos Automotores , Gasolina/análise
6.
Environ Sci Technol ; 58(28): 12409-12419, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38953529

RESUMO

Waste-to-energy systems can provide a functional demonstration of the economic and environmental benefits of circularity, innovation, and reimagining existing systems. This study offers a robust quantification of the greenhouse gas (GHG) emission reduction potential of the adoption of anaerobic digestion (AD) technology on applicable large-scale dairy farms in the contiguous United States. GHG reduction estimates were developed through a robust life cycle modeling framework paired with sensitivity and uncertainty analyses. Twenty dairy configurations were modeled to capture important differences in housing and manure management practices, applicable AD technologies, regional climates, storage cleanout schedules, and methods of land application. Monte Carlo results for the 90% confidence interval illustrate the potential for AD adoption to reduce GHG emissions from the large-scale dairy industry by 2.45-3.52 MMT of CO2-eq per year considering biogas use only in renewable natural gas programs and as much as 4.53-6.46 MMT of CO2-eq per year with combined heat and power as an additional biogas use case. At the farm level, AD technology may reduce GHG emissions from manure management systems by 58.1-79.8% depending on the region. Discussion focuses on regional differences in GHG emissions from manure management strategies and the challenges and opportunities surrounding AD adoption.


Assuntos
Indústria de Laticínios , Gases de Efeito Estufa , Anaerobiose , Estados Unidos , Esterco , Fazendas , Efeito Estufa , Animais
7.
Environ Sci Technol ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700697

RESUMO

Current brine management strategies are based on the disposal of brine in nearby aquifers, representing a loss in potential water and mineral resources. Zero liquid discharge (ZLD) is a possible strategy to reduce brine rejection while increasing the resource recovery from desalination plants. However, ZLD substantially increases the energy consumption and carbon footprint of a desalination plant. The predominant strategy to reduce the energy consumption and carbon footprint of ZLD is through the use of a hybrid desalination technology that integrates renewable energy. Here, we built a computational thermodynamic model of the most mature electrified hybrid technology for ZLD powered by photovoltaic (PV). We examine the potential size and cost of ZLD plants in the US. This work explores the variables (geospatial and design) that most influence the levelized cost of water and the second law efficiency. There is a negative correlation between minimizing the LCOW and maximizing the second-law. And maximizing the second-law, the states that more brine produces, Texas is the location where the studied system achieves the lowest LCOW and high second-law efficiency, while California is the state where the studied system is less favorable. A multiobjective optimization study assesses the impact of considering a carbon tax in the cost of produced water and determines the best potential size for the studied plant.

8.
Environ Sci Technol ; 58(12): 5299-5309, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38380838

RESUMO

Recent investments in "clean" hydrogen as an alternative to fossil fuels are driven by anticipated climate benefits. However, most climate benefit calculations do not adequately account for all climate warming emissions and impacts over time. This study reanalyzes a previously published life cycle assessment as an illustrative example to show how the climate impacts of hydrogen deployment can be far greater than expected when including the warming effects of hydrogen emissions, observed methane emission intensities, and near-term time scales; this reduces the perceived climate benefits upon replacement of fossil fuel technologies. For example, for blue (natural gas with carbon capture) hydrogen pathways, the inclusion of upper-end hydrogen and methane emissions can yield an increase in warming in the near term by up to 50%, whereas lower-end emissions decrease warming impacts by at least 70%. For green (renewable-based electrolysis) hydrogen pathways, upper-end hydrogen emissions can reduce climate benefits in the near term by up to 25%. We also consider renewable electricity availability for green hydrogen and show that if it is not additional to what is needed to decarbonize the electric grid, there may be more warming than that seen with fossil fuel alternatives over all time scales. Assessments of hydrogen's climate impacts should include the aforementioned factors if hydrogen is to be an effective decarbonization tool.


Assuntos
Hidrogênio , Metano , Clima , Gás Natural , Dióxido de Carbono
9.
Environ Sci Technol ; 58(16): 6964-6977, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38602491

RESUMO

The rapid reduction in the cost of renewable energy has motivated the transition from carbon-intensive chemical manufacturing to renewable, electrified, and decarbonized technologies. Although electrified chemical manufacturing technologies differ greatly, the feasibility of each electrified approach is largely related to the energy efficiency and capital cost of the system. Here, we examine the feasibility of ammonia production systems driven by wind and photovoltaic energy. We identify the optimal regions where wind and photovoltaic electricity production may be able to meet the local demand for ammonia-based fertilizers and set technology targets for electrified ammonia production. To compete with the methane-fed Haber-Bosch process, electrified ammonia production must reach energy efficiencies of above 20% for high natural gas prices and 70% for low natural gas prices. To account for growing concerns regarding access to water, geospatial optimization considers water stress caused by new ammonia facilities, and recommendations ensure that the identified regions do not experience an increase in water stress. Reducing water stress by 99% increases costs by only 1.4%. Furthermore, a movement toward a more decentralized ammonia supply chain driven by wind and photovoltaic electricity can reduce the transportation distance for ammonia by up to 76% while increasing production costs by 18%.


Assuntos
Amônia , Energia Renovável , Fertilizantes , Eletricidade , Vento
10.
Environ Res ; 252(Pt 4): 119028, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38685297

RESUMO

In developing economies, the decarbonization of energy sector has become a global priority for sustainable and cleaner energy system. Biohydrogen production from renewable sources of waste biomass is a good source of energy incentive that reduces the pollution. Biohydrogen has a high calorific value and emits no emissions, producing both energy security and environmental sustainability. Biohydrogen production technologies have become one of the main renewable sources of energy. The present paper entails the role of biohydrogen recovered from waste biomasses like agricultural waste (AW), organic fraction of municipal solid waste (OFMSW), food processing industrial waste (FPIW), and sewage sludge (SS) as a promising solution. The main sources of increasing yield percentage of biohydrogen generation from waste feedstock using different technologies, and process parameters are also emphasized in this review. The production paths for biohydrogen are presented in this review article, and because of advancements in R and D, biohydrogen has gained viability as a biofuel for the future and discusses potential applications in power generation, transportation, and industrial processes, emphasizing the versatility and potential for integration into existing energy infrastructure. The investigation of different biochemical technologies and methods for producing biohydrogen, including anaerobic digestion (AD), dark fermentation (DF), photo fermentation (PF), and integrated dark-photo fermentation (IDPF), has been overviewed. This analysis also discusses future research, investment, and sustainable energy options transitioning towards a low-carbon future, as well as potential problems, economic impediments, and policy-related issues with the deployment of biohydrogen in emerging nations.


Assuntos
Biocombustíveis , Países em Desenvolvimento , Biocombustíveis/análise , Hidrogênio , Resíduos Sólidos/análise
11.
Surg Endosc ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951239

RESUMO

BACKGROUND: The healthcare system plays a pivotal role in environmental sustainability, and the operating room (OR) significantly contributes to its overall carbon footprint. In response to this critical challenge, leading medical societies, government bodies, regulatory agencies, and industry stakeholders are taking measures to address healthcare sustainability and its impact on climate change. Healthcare now represents almost 20% of the US national economy and 8.5% of US carbon emissions. Internationally, healthcare represents 5% of global carbon emissions. US Healthcare is an outlier in both per capita cost, and per capita greenhouse gas emission, with almost twice per capita emissions compared to every other country in the world. METHODS: The Society of American Gastrointestinal and Endoscopic Surgeons (SAGES) and the European Association for Endoscopic Surgery (EAES) established the Sustainability in Surgical Practice joint task force in 2023. This collaborative effort aims to actively promote education, mitigation, and innovation, steering surgical practices toward a more sustainable future. RESULTS: Several key initiatives have included a survey of members' knowledge and awareness, a scoping review of terminology, metrics, and initiatives, and deep engagement of key stakeholders. DISCUSSION: This position paper serves as a Call to Action, proposing a series of actions to catalyze and accelerate the surgical sustainability leadership needed to respond effectively to climate change, and to lead the societal transformation towards health that our times demand.

12.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33723013

RESUMO

With the increasing demand for net-zero sustainable aviation fuels (SAF), new conversion technologies are needed to process waste feedstocks and meet carbon reduction and cost targets. Wet waste is a low-cost, prevalent feedstock with the energy potential to displace over 20% of US jet fuel consumption; however, its complexity and high moisture typically relegates its use to methane production from anaerobic digestion. To overcome this, methanogenesis can be arrested during fermentation to instead produce C2 to C8 volatile fatty acids (VFA) for catalytic upgrading to SAF. Here, we evaluate the catalytic conversion of food waste-derived VFAs to produce n-paraffin SAF for near-term use as a 10 vol% blend for ASTM "Fast Track" qualification and produce a highly branched, isoparaffin VFA-SAF to increase the renewable blend limit. VFA ketonization models assessed the carbon chain length distributions suitable for each VFA-SAF conversion pathway, and food waste-derived VFA ketonization was demonstrated for >100 h of time on stream at approximately theoretical yield. Fuel property blending models and experimental testing determined normal paraffin VFA-SAF meets 10 vol% fuel specifications for "Fast Track." Synergistic blending with isoparaffin VFA-SAF increased the blend limit to 70 vol% by addressing flashpoint and viscosity constraints, with sooting 34% lower than fossil jet. Techno-economic analysis evaluated the major catalytic process cost-drivers, determining the minimum fuel selling price as a function of VFA production costs. Life cycle analysis determined that if food waste is diverted from landfills to avoid methane emissions, VFA-SAF could enable up to 165% reduction in greenhouse gas emissions relative to fossil jet.


Assuntos
Biocombustíveis , Ácidos Graxos Voláteis/metabolismo , Alimentos , Eliminação de Resíduos , Aviação , Catálise , Gases de Efeito Estufa , Metano
13.
Proc Natl Acad Sci U S A ; 118(46)2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34725255

RESUMO

Societal benefits from climate change mitigation accrue via multiple pathways. We examine the US impacts of emission changes on several factors that are affected by both climate and air quality responses. Nationwide benefits through midcentury stem primarily from air quality improvements, which are realized rapidly, and include human health, labor productivity, and crop yield benefits. Benefits from reduced heat exposure become large around 2060, thereafter often dominating over those from improved air quality. Monetized benefits are in the tens of trillions of dollars for avoided deaths and tens of billions for labor productivity and crop yield increases and reduced hospital expenditures. Total monetized benefits this century are dominated by health and are much larger than in previous analyses due to improved understanding of the human health impacts of exposure to both heat and air pollution. Benefit-cost ratios are therefore much larger than in prior studies, especially those that neglected clean air benefits. Specifically, benefits from clean air exceed costs in the first decade, whereas benefits from climate alone exceed costs in the latter half of the century. Furthermore, monetized US benefits largely stem from US emissions reductions. Increased emphasis on the localized, near-term air quality-related impacts would better align policies with societal benefits and, by reducing the mismatch between perception of climate as a risk distant in space and time and the need for rapid action to mitigate long-term climate change, might help increase acceptance of mitigation policies.


Assuntos
Poluição do Ar/efeitos adversos , Mudança Climática/estatística & dados numéricos , Produtos Agrícolas/crescimento & desenvolvimento , Poluentes Atmosféricos/efeitos adversos , Análise Custo-Benefício , Política Ambiental , Humanos , Material Particulado/efeitos adversos , Estados Unidos
14.
J Environ Manage ; 351: 119879, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38157574

RESUMO

In recent years, food waste has been a global concern that contributes to climate change. To deal with the rising impacts of climate change, in Hong Kong, food waste is converted into electricity in the framework of low-carbon approach. This work provides an overview of the conversion of food waste into electricity to achieve carbon neutrality. The production of methane and electricity from waste-to-energy (WTE) conversion are determined. Potential income from its sale and environmental benefits are also assessed quantitatively and qualitatively. It was found that the electricity generation from the food waste could reach 4.33 × 109 kWh annually, avoiding equivalent electricity charge worth USD 3.46 × 109 annually (based on US' 8/kWh). An equivalent CO2 mitigation of 9.9 × 108 kg annually was attained. The revenue from its electricity sale in market was USD 1.44×109 in the 1st year and USD 4.24 ×109 in the 15th year, respectively, according to the projected CH4 and electricity generation. The modelling study indicated that the electricity production is 0.8 kWh/kg of landfilled waste. The food waste could produce electricity as low as US' 8 per kW ∙ h. In spite of its promising results, there are techno-economic bottlenecks in commercial scale production and its application at comparable costs to conventional fossil fuels. Issues such as high GHG emissions and high production costs have been determined to be resolved later. Overall, this work not only leads to GHG avoidance, but also diversifies energy supply in providing power for homes in the future.


Assuntos
Eliminação de Resíduos , Mudança Climática , Perda e Desperdício de Alimentos , Hong Kong , Alimentos , Carbono , Eletricidade , China
15.
J Environ Manage ; 351: 119893, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38157576

RESUMO

The application of carbon fiber in the wind power industry is of great interest in declining CO2 emissions but the carbon fiber manufacturing process is still a long way heading cleaner production. Since little to no information clarifies the dual effects from carbon fiber production to application, this study carried out a life cycle assessment (LCA) to recognize the environmental performances of polyacrylonitrile (PAN)-based carbon fiber production and explore the decarbonization effects of carbon fiber application in wind turbine blades. Based on on-site data from a leading carbon fiber production chain in China, potential environmental impacts of carbon fiber production predominantly originated from the precursor spinning stage (accounted for 13-91%). Fossil depletion (20.24 kg oil eq.), climate change (67.79 kg CO2 eq.), terrestrial ecotoxicity (165.63 kg 1,4-DCB eq.) and photochemical ozone formation (0.14 kg NOx eq.) were the four noteworthy areas to improve the sustainable development. Different scenarios in energy and advanced technology were set to explore the potential improvement of the environmental performance of carbon fiber products. Energy structure (wind power) can improve an average of 22.58% environmental benefit compared with the background scenarios. Regarding the decarbonization effects, the energy payback time and the carbon payback time were estimated to be 0.73 and 0.37 months respectively. Therefore, carbon fiber is a trustworthy material in the strategy to achieve sustainable development from a life cycle perspective.


Assuntos
Dióxido de Carbono , Ozônio , Fibra de Carbono , Meio Ambiente , Carbono
16.
J Environ Manage ; 351: 119713, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38042083

RESUMO

Produced water (PW) and carbon dioxide (CO2) are traditionally considered waste streams the oil and gas industry and other sectors generate. However, these waste products are examples of "waste to wealth" products with a dual nature of being valuable products or disposable byproducts. PW contains various elements and compounds that can be extracted and used in the manufacturing or chemical processing industry. Concentrated brine is generated from PW and can be used as feedstock in chemical processes. On the other hand, excess CO2 produced in various industrial processes needs to be sequestered either through non-conversion processes, such as enhanced oil recovery and storage in geological formations, or through CO2 conversion processes into fuels, polymers, and chemicals. While there is growing interest in reusing these products individually, no studies have explored the opportunities for producing additional chemicals or valuable products by combining CO2 and PW waste streams (CO2-PW). This study identifies the potential resources that can be generated by combining the beneficial reuse of PW and CO2 conversion processes. CO2-PW chemical conversion presents an opportunity to expand the carbon capture, utilization, and storage (CCUS) mix while reducing the environmental impact of disposing of these byproducts. The advantages of utilizing these waste streams for diverse applications are linked with the sustainable management of PW and decarbonization, contributing positively to a more responsible approach to resource management and climate change mitigation.


Assuntos
Dióxido de Carbono , Meio Ambiente , Dióxido de Carbono/química , Mudança Climática
17.
J Environ Manage ; 365: 121558, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38936017

RESUMO

To estimate the average lifespan of container vessels, this study specified their most suitable lifespan distribution function using a comprehensive dataset comprising 2188 container vessels manufactured and retired between 1941 and 2018. The lifecycle CO2 emissions of vessels were estimated under different scenarios with varied average lifespans and average carbon intensity improvements per annum through stock-flow model analysis. The results indicated that a normal distribution best represented the lifespan distribution of container vessels, with an estimated average lifespan of approximately 24 years. Furthermore, scenario analyses revealed that shortening the lifespans of container vessels can effectively reduce lifecycle CO2 emissions. This study demonstrates the synergistic contribution of accelerating the replacement cycle of container vessels and implementing stronger energy efficiency regulations for emissions reduction, highlighting the importance of policies regulating vessel lifespans.


Assuntos
Navios , Dióxido de Carbono/análise
18.
J Environ Manage ; 353: 120242, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38325284

RESUMO

Carbon tax and decarbonization subsidy are an effective policy mix in reducing carbon emissions. However, there is a research gap between the deterministic and static analysis related to carbon reduction policy instruments and the dynamic green transition influenced by stochastic factors. This research investigates the optimal dynamic carbon reduction strategies that develop green technologies, increase abatement inputs, and reduce carbon emissions by applying the stochastic optimal control theory. Firms that are incentivized by decarbonization subsidies and regulated by carbon tax choose optimal closed-loop control strategies of abatement inputs to achieve profit-maximizing objectives with carbon reduction constraints. The explicit solutions of the optimal carbon tax and decarbonization subsidy are provided. The simulation results illustrate that the optimal policy mix is feasible in the effective period when the carbon emission decreases significantly, which indicates that the abatement policy mix can effectively promote carbon reduction. Our results reveal that the dynamic optimal policy mix is conducive to achieving carbon abatement goals with capital uncertainty. The government should implement a dynamic carbon tax and decarbonization subsidy policy mix simultaneously associated with optimal closed-loop carbon reduction strategies. Firms with asymmetric decarbonization efficiency can transfer progressively into a cleaner productive pattern.


Assuntos
Carbono , Governo , Simulação por Computador , Políticas , Tecnologia , China
19.
J Environ Manage ; 358: 120860, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38615400

RESUMO

Cement is one of the widely used materials in construction, and its production is both energy- and emission-intensive, contributing significantly to industrial emissions. This study investigates multiple methods for reducing emissions in the Indian cement sector based on the mass and energy balances of a representative cement plant. A novel methodology for calculating the overall emissions reduction per tonne of cement with multiple emission reduction measures and their interdependencies is proposed. The effect of captive power plants in the cement industry on emissions reduction is also considered. The results are depicted using an emission abatement curve, which gives the CO2 abatement cost against cumulative emission reduction per tonne of cement, and a cost premium curve, which shows the cumulative abatement cost against percentage abatement. The analysis shows that up to 30% emissions reduction is possible using existing emission reduction measures in all the cases considered with no additional cost, and near-zero emission reduction is only possible with the adoption of emerging technologies such as carbon capture and storage. The proposed methodology is the first to explore the impact of multiple measures for emission reduction on a given cement plant, allowing for a realistic estimate of emission reduction from the measures implemented.


Assuntos
Materiais de Construção , Índia , Dióxido de Carbono/análise , Centrais Elétricas
20.
J Environ Manage ; 360: 121127, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38749133

RESUMO

The decarbonization of the energy sector has been a subject of research and of political discussions for several decades, gaining significant attention in the last years. It is commonly acknowledged that the most obvious way to achieve decarbonization is the use of renewable energy sources. Within the context of the energy sector decarbonization, many mainly industrialized countries recently started developing national plans to establish a hydrogen-based economy in the very near future. The plans for green hydrogen initially try to (a) target sectors that are difficult to decarbonize and (b) address issues related to the storage and transportation of CO2-free energy. To achieve almost complete decarbonization, electric power must be generated exclusively from renewable sources. In so-called Power-to-X (PtX) technologies, green hydrogen is generated from electricity and subsequently converted to another energy carrier which can be further stored, transported and used. In PtX, X stands, for example, for liquid hydrogen, methanol or ammonia. The challenges associated with decarbonization include those associated with (a) the expansion of renewable energies (e.g., high capital demand, political and social issues), (b) the production, transportation, and storage of hydrogen and the energy carriers denoted by X in PtX (e.g., high cost and low overall efficiency), and (c) the expected significant increase in the demand for electrical energy. The paper discusses whether and under which conditions the current national and international hydrogen plans of many industrialized countries could lead to a maximization of decarbonization in the world. It concludes that, in general, as long as the conditions for generating large excess amounts of green electricity are not met, the quick establishment of a hydrogen economy could not only be very expensive, but also counterproductive to the worldwide decarbonization efforts.


Assuntos
Eletricidade , Hidrogênio , Energia Renovável , Dióxido de Carbono
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa