Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Bioeng Transl Med ; 9(1): e10597, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38193110

RESUMO

Breast cancer is the most prevalent malignant tumor affecting women's health. Bone is the most common distant metastatic organ, worsening the quality of life and increasing the mortality of patients. Early detection of breast cancer bone metastasis is urgent for halting disease progression and improving tumor prognosis. Recently, extracellular matrix (ECM) with biomimetic tissue niches opened a new avenue for tumor models in vitro. Here, we developed a biomimetic decellularized ECM (dECM) system to recapitulate bone niches at different situations, bone mimetic dECM from osteoblasts (BM-ECM) and bone tumor mimetic dECM from osteosarcoma cells (OS-ECM). The two kinds of dECMs exhibited distinct morphology, protein composition, and distribution. Interestingly, highly metastatic breast cancer cells tended to adhere and migrate on BM-ECM, while lowly metastatic breast cancer cells preferred the OS-ECM niche. Epithelial-to-mesenchymal transition was a potential mechanism to initiate the breast cancer cell migration on different biomimetic dECMs. Importantly, in the nude mice model, the dECM system captured metastatic breast cancer cells as early as 10 days after orthotopic transplantation in mammary gland pads, with higher signal on BM-ECM than that on OS-ECM. Collectively, the biomimetic dECM system might be a promising tumor model to distinguish the metastatic ability of breast cancer cells in vitro and to facilitate early detection of metastatic breast cancer cells in vivo, contributing to the diagnosis of breast cancer bone metastasis.

2.
Eur J Med Res ; 28(1): 581, 2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38071348

RESUMO

BACKGROUND: The adhesion and survival state of cells on scaffold material is a major problem in tissue-engineered blood vessel (TEBV) culture. Platelet-rich plasma (PRP) contains a large amount of biologically active factors and fibrin, which is expected to play an important role in TEBV culture. PURPOSE: To combine PRP with cells and scaffold material to promote cell adhesion and biological activity on the scaffold material. METHODS: The adhesion status and migration of SMCs under the optimal concentration suitable for SMC growth and the optimal concentration of PRP were examined by scanning electron microscopy, HE staining, CCK-8 assays, qPCR, WB, and other experimental methods and compared with those under the conventional culture (20% FBS); finally, the effect of PRP on the deposition of ECM in vascular tissue engineering culture was verified by three-dimensional culture. RESULTS: PRP at 20% is a suitable concentration for SMCs. Compared with the control group, the 20% PRP group had better migration, and the number of SMC adhesions was significantly higher than that of the control group. In addition, collagen deposition in the experimental group was significantly higher than that in the control group. CONCLUSION: PRP (20%) can promote SMC adhesion, migration, and collagen deposition on the scaffold material.


Assuntos
Músculo Liso Vascular , Plasma Rico em Plaquetas , Humanos , Músculo Liso Vascular/metabolismo , Colágeno , Adesão Celular , Stents , Células Cultivadas
3.
Biomed Mater ; 19(1)2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-37992318

RESUMO

Bioprinting offers new opportunities to obtain reliable 3Din vitromodels of the liver for testing new drugs and studying pathophysiological mechanisms, thanks to its main feature in controlling the spatial deposition of cell-laden hydrogels. In this context, decellularized extracellular matrix (dECM)-based hydrogels have caught more and more attention over the last years because of their characteristic to closely mimic the tissue-specific microenvironment from a biological point of view. In this work, we describe a new concept of designing dECM-based hydrogels; in particular, we set up an alternative and more practical protocol to develop a hepatic lyophilized dECM (lyo-dECM) powder as an 'off-the-shelf' and free soluble product to be incorporated as a biomimetic component in the design of 3D-printable hybrid hydrogels. To this aim, the powder was first characterized in terms of cytocompatibility on human and porcine mesenchymal stem cells (MSCs), and the optimal powder concentration (i.e. 3.75 mg ml-1) to use in the hydrogel formulation was identified. Moreover, its non-immunogenicity and capacity to reactivate the elastase enzyme potency was proved. Afterward, as a proof-of-concept, the powder was added to a sodium alginate/gelatin blend, and the so-defined multi-component hydrogel was studied from a rheological point of view, demonstrating that adding the lyo-dECM powder at the selected concentration did not alter the viscoelastic properties of the original material. Then, a printing assessment was performed with the support of computational simulations, which were useful to definea priorithe hydrogel printing parameters as window of printability and its post-printing mechanical collapse. Finally, the proposed multi-component hydrogel was bioprinted with cells inside, and its post-printing cell viability for up to 7 d was successfully demonstrated.


Assuntos
Bioimpressão , Matriz Extracelular , Suínos , Animais , Humanos , Pós , Hidrogéis , Biomimética , Impressão Tridimensional , Fígado , Bioimpressão/métodos , Alicerces Teciduais , Engenharia Tecidual
4.
Cells ; 12(4)2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36831243

RESUMO

Cardiomyocyte alignment in myocardium tissue plays a significant role in the physiological, electrical, and mechanical functions of the myocardium. It remains, however, difficult to align cardiac cells in a 3D in vitro heart model. This paper proposes a simple method to align cells using microfabricated Polydimethylsiloxane (PDMS) grooves with large dimensions (of up to 350 µm in width), similar to the dimensions of trabeculae carneae, the smallest functional unit of the myocardium. Two cell groups were used in this work; first, H9c2 cells in combination with Nor10 cells for proof of concept, and second, neonatal cardiac cells to investigate the functionality of the 3D model. This model compared the patterned and nonpatterned 3D constructs, as well as the 2D cell cultures, with and without patterns. In addition to alignment, we assessed the functionality of our proposed 3D model by comparing beating rates between aligned and non-aligned structures. In order to assess the practicality of the model, the 3D aligned structures should be demonstrated to be detachable and alignable. This evaluation is crucial to the use of this 3D functional model in future studies related to drug screening, building blocks for tissue engineering, and as a heart-on-chip by integrating microfluidics.


Assuntos
Sistemas Microfisiológicos , Miócitos Cardíacos , Humanos , Recém-Nascido , Miocárdio , Engenharia Tecidual/métodos , Técnicas de Cultura de Células
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa