Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 282
Filtrar
1.
Brain ; 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39054915

RESUMO

Declarative memory encompasses episodic and semantic divisions. Episodic memory captures singular events with specific spatiotemporal relationships, while semantic memory houses context-independent knowledge. Behavioural and functional neuroimaging studies have revealed common and distinct neural substrates of both memory systems, implicating mesiotemporal lobe (MTL) regions such as the hippocampus and distributed neocortices. Here, we explored declarative memory system reorganization in patients with unilateral temporal lobe epilepsy (TLE) as a human disease model to test the impact of variable degrees of MTL pathology on memory function. Our cohort included 31 patients with TLE as well as 60 age and sex-matched healthy controls, and all participants underwent episodic and semantic retrieval tasks during a multimodal MRI session. The functional MRI tasks were closely matched in terms of stimuli and trial design. Capitalizing on non-linear connectome gradient mapping techniques, we derived task-based functional topographies during episodic and semantic memory states, both in the MTL and in neocortical networks. Comparing neocortical and hippocampal functional gradients between TLE patients and healthy controls, we observed a marked topographic reorganization of both neocortical and MTL systems during episodic memory states. Neocortical alterations were characterized by reduced functional differentiation in TLE across lateral temporal and midline parietal cortices in both hemispheres. In the MTL, on the other hand, patients presented with a more marked functional differentiation of posterior and anterior hippocampal segments ipsilateral to the seizure focus and pathological core, indicating perturbed intrahippocampal connectivity. Semantic memory reorganization was also found in bilateral lateral temporal and ipsilateral angular regions, while hippocampal functional topographies were unaffected. Leveraging MRI proxies of MTL pathology, we furthermore observed alterations in hippocampal microstructure and morphology that were associated with TLE-related functional reorganization during episodic memory. Moreover, correlation analysis and statistical mediation models revealed that these functional alterations contributed to behavioural deficits in episodic, but again not semantic memory in patients. Altogether, our findings suggest that semantic processes rely on distributed neocortical networks, while episodic processes are supported by a network involving both the hippocampus and neocortex. Alterations of such networks can provide a compact signature of state-dependent reorganization in conditions associated with MTL damage, such as TLE.

2.
Hippocampus ; 34(8): 438-451, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-39016331

RESUMO

Studies of the impact of brain injury on memory processes often focus on the quantity and episodic richness of those recollections. Here, we argue that the organization of one's recollections offers critical insights into the impact of brain injury on functional memory. It is well-established in studies of word list memory that free recall of unrelated words exhibits a clear temporal organization. This temporal contiguity effect refers to the fact that the order in which word lists are recalled reflects the original presentation order. Little is known, however, about the organization of recall for semantically rich materials, nor how recall organization is impacted by hippocampal damage and memory impairment. The present research is the first study, to our knowledge, of temporal organization in semantically rich narratives in three groups: (1) Adults with bilateral hippocampal damage and severe declarative memory impairment, (2) adults with bilateral ventromedial prefrontal cortex (vmPFC) damage and no memory impairment, and (3) demographically matched non-brain-injured comparison participants. We find that although the narrative recall of adults with bilateral hippocampal damage reflected the temporal order in which those narratives were experienced above chance levels, their temporal contiguity effect was significantly attenuated relative to comparison groups. In contrast, individuals with vmPFC damage did not differ from non-brain-injured comparison participants in temporal contiguity. This pattern of group differences yields insights into the cognitive and neural systems that support the use of temporal organization in recall. These data provide evidence that the retrieval of temporal context in narrative recall is hippocampal-dependent, whereas damage to the vmPFC does not impair the temporal organization of narrative recall. This evidence of limited but demonstrable organization of memory in participants with hippocampal damage and amnesia speaks to the power of narrative structures in supporting meaningfully organized recall despite memory impairment.


Assuntos
Amnésia , Hipocampo , Rememoração Mental , Humanos , Hipocampo/patologia , Hipocampo/diagnóstico por imagem , Hipocampo/fisiopatologia , Rememoração Mental/fisiologia , Masculino , Feminino , Pessoa de Meia-Idade , Amnésia/fisiopatologia , Amnésia/patologia , Amnésia/psicologia , Adulto , Narração , Idoso , Testes Neuropsicológicos , Fatores de Tempo , Córtex Pré-Frontal/patologia , Córtex Pré-Frontal/fisiopatologia , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/lesões
3.
Cogn Affect Behav Neurosci ; 24(5): 894-911, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39085585

RESUMO

Theta oscillations support memory formation, but their exact contribution to the communication between prefrontal cortex (PFC) and the hippocampus is unknown. We tested the functional relevance of theta oscillations as a communication link between both areas for memory formation using transcranial alternating current stimulation (tACS). Healthy, young participants learned two lists of Dutch-German word pairs and retrieved them immediately and with a 30-min delay. In the encoding group (N = 30), tACS was applied during the encoding of list 1. List 2 was used to test stimulation aftereffects. In the retrieval group (N = 23), we stimulated during the delayed recall. In both groups, we applied tACS bilaterally at prefrontal and tempo-parietal sites, using either individualized theta frequency or 15 Hz (as control), according to a within-subject design. Stimulation with theta-tACS did not alter overall learning performance. An exploratory analysis revealed that immediate recall improved when word-pairs were learned after theta-tACS (list 2). Applying theta-tACS during retrieval had detrimental effects on memory. No changes in the power of the respective frequency bands were observed. Our results do not support the notion that impacting the communication between PFC and the hippocampus during a task by bilateral tACS improves memory. However, we do find evidence that direct stimulation had a trend for negatively interfering effects during immediate and delayed recall. Hints for beneficial effects on memory only occurred with aftereffects of the stimulation. Future studies need to further examine the effects during and after stimulation on memory formation.


Assuntos
Hipocampo , Rememoração Mental , Córtex Pré-Frontal , Ritmo Teta , Estimulação Transcraniana por Corrente Contínua , Humanos , Masculino , Feminino , Ritmo Teta/fisiologia , Adulto Jovem , Rememoração Mental/fisiologia , Córtex Pré-Frontal/fisiologia , Adulto , Hipocampo/fisiologia
4.
J Sleep Res ; 33(5): e14091, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38196130

RESUMO

Sleep consolidates declarative memory after deep but not shallow incidental encoding, but little is known about this form of consolidation. One unexplored area is the extent to which the amount of exposure to incidentally encoded information affects consolidation processes. In two experiments, we manipulated the number of times information was presented. In Experiment 1, participants encoded words either one or three times in a deep or shallow incidental encoding task and completed a surprise recognition test after sleep or wake. Sleep consolidated information after deep encoding after one and three exposures, but not after shallow encoding. In Experiment 2, we explored the relationship between sleep architecture and memory after deep encoding. There was a trend for accuracy to be negatively related to N1 sleep, and reaction time to be negatively related to slow-wave sleep for words encoded once; however, the correlations did not survive corrections for multiple comparisons. These results are discussed with respect to active and passive consolidation processes.


Assuntos
Consolidação da Memória , Sono , Humanos , Consolidação da Memória/fisiologia , Masculino , Feminino , Sono/fisiologia , Adulto Jovem , Adulto , Tempo de Reação/fisiologia , Reconhecimento Psicológico/fisiologia , Polissonografia , Eletroencefalografia , Adolescente
5.
J Sleep Res ; 33(4): e14126, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38112275

RESUMO

Acute exercise has been shown to affect long-term memory and sleep. However, it is unclear whether exercise-induced changes in sleep architecture are associated with enhanced memory. Recently, it has been shown that exercise followed by a nap improved declarative memory. Whether these effects transfer to night sleep and other memory domains has not yet been studied. Here, we investigate the influence of exercise on nocturnal sleep architecture and associations with sleep-dependent procedural and declarative memory consolidation. Nineteen subjects (23.68 ± 3.97 years) were tested in a balanced cross-over design. In two evening sessions, participants either exercised (high-intensity interval training) or rested immediately after encoding two memory tasks: (1) a finger tapping task and (2) a paired-associate learning task. Subsequent nocturnal sleep was recorded by polysomnography. Retrieval was conducted the following morning. High-intensity interval training lead to an increased declarative memory retention (p = 0.047, d = 0.40) along with a decrease in REM sleep (p = 0.012, d = 0.75). Neither procedural memory nor NREM sleep were significantly affected. Exercise-induced changes in N2 showed a positive correlation with procedural memory retention which did not withstand multiple comparison correction. Exploratory analyses on sleep spindles and slow wave activity did not reveal significant effects. The present findings suggest an exercise-induced enhancement of declarative memory which aligns with changes in nocturnal sleep architecture. This gives additional support for the idea of a potential link between exercise-induced sleep modifications and memory formation which requires further investigation in larger scaled studies.


Assuntos
Estudos Cross-Over , Exercício Físico , Consolidação da Memória , Polissonografia , Sono , Humanos , Consolidação da Memória/fisiologia , Masculino , Feminino , Adulto , Adulto Jovem , Exercício Físico/fisiologia , Sono/fisiologia , Treinamento Intervalado de Alta Intensidade/métodos , Fases do Sono/fisiologia , Eletroencefalografia , Sono REM/fisiologia
6.
Dyslexia ; 30(3): e1780, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39030983

RESUMO

A topic of recent debate is the hypothesis that deficits associated with developmental disorders of language, such as reading disability, can be explained by a selective weakness in procedural memory. Adults with (n = 29; RD) and without (n = 29; TD) reading disability completed a weather prediction task under immediate and delayed feedback conditions, that rely on the striatal (procedural) and hippocampal (declarative) circuits, respectively. We examined trial-by-trial accuracy by feedback condition (immediate vs. delayed) and group (RD vs. TD). In the immediate feedback condition, we found the TD group to have a higher learning rate than the RD group. In the delayed feedback condition, we found the TD group reach a high level of accuracy early, and outperform the RD group for the duration of the task. The TD group also made gains in reaction time under both conditions, while the RD group slowed in their responses. Taken together, it appears that while procedural memory is indeed impaired in adults with reading disability, to a lesser extent, declarative memory is also affected. This lends partial support to the PDH, and more broadly to the position that reading disability is associated with general (non-linguistic) difficulties in learning.


Assuntos
Dislexia , Tempo (Meteorologia) , Humanos , Dislexia/fisiopatologia , Masculino , Feminino , Adulto , Adulto Jovem , Aprendizagem/fisiologia , Tempo de Reação/fisiologia , Memória/fisiologia , Retroalimentação Psicológica/fisiologia
7.
Mem Cognit ; 52(1): 7-22, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37488345

RESUMO

Choices made in everyday life are highly variable. Sometimes, you may find yourself choosing between two similar options (e.g., breakfast foods to eat) and other times between two dissimilar options (e.g., what to buy with a gift certificate). The goal of the present study was to understand how the similarity of choice options affects our ability to remember what we choose and what we did not choose. We hypothesized that choosing between similar as compared to dissimilar options would evoke a comparison-based strategy (evaluating options with respect to one another), fostering a relational form of encoding and leading to better memory for both the chosen and unchosen options. In Experiment 1, participants reported their strategy when choosing between pairs of similar or dissimilar options, revealing that participants were more likely to use a comparison-based strategy when faced with similar options. In Experiment 2, we tested memory after participants made choices between similar or dissimilar options, finding improved memory for both chosen and unchosen options from the similar compared to dissimilar choice trials. In Experiment 3, we examined strategy use when choosing between pairs of similar or dissimilar options and memory for these options. Replicating and extending the results of the first two experiments, we found that participants were more likely to use a comparison-based strategy when choosing between similar than dissimilar options, and that the positive effect of similarity on memory was stronger for unchosen than chosen options when controlling for strategy use. We interpret our results as evidence that option similarity impacts the mnemonic processes used during choice, altering what we encode and ultimately remember about our choices.


Assuntos
Comportamento de Escolha , Memória , Humanos , Comportamento de Escolha/fisiologia , Rememoração Mental , Cognição , Motivação
8.
Neurobiol Learn Mem ; 206: 107858, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37944636

RESUMO

The reminder of a previously-learned memory can render that memory vulnerable to disruption or change in expression. Such memory alterations have been viewed as supportive of the framework of memory reconsolidation. However, alternative interpretations and inconsistencies in the replication of fundamental findings have raised questions particularly in the domain of human declarative memory. Here we present a series of related experiments, all of which involve the learning of a declarative memory, followed 1-2 days later by memory reminder. Post-reminder learning of interfering material did result in modulation of subsequent recall at test, but the precise manifestation of that interference effect differed across experiments. With post-reminder performance of a visuospatial task, a quantitative impairment in test recall performance was observed within a visual list-learning paradigm, but not in a foreign vocabulary learning paradigm. These results support the existence of reminder-induced memory processes that can lead to the alteration of subsequent memory performance by interfering tasks. However, it remains unclear whether these effects are reflective of modulation or impairment of the putative memory reconsolidation process.


Assuntos
Memória de Longo Prazo , Memória , Humanos , Rememoração Mental , Cognição , Aprendizagem Espacial
9.
Psychol Res ; 87(6): 1743-1752, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36478126

RESUMO

Recent works have proposed that spatial mechanisms in the hippocampal-entorhinal system might have originally developed to represent distances and positions in the physical space and successively evolved to represent experience and memory in the mental space (Bellmund et al. 2018; Bottini and Doeller 2020). Within this phylogenetic continuity hypothesis (Buzsáki and Moser 2013), mechanisms supporting episodic and semantic memory would have evolved from egocentric and allocentric spatial navigation mechanisms, respectively. Recent studies have described a specific relationship between human performance in egocentric navigation and episodic memory (Committeri et al. 2020; Fragueiro et al. 2021), representing the first behavioral support to this hypothesis. Here, we tested the causal relationship among egocentric navigation and both episodic and semantic components of declarative memory. We conducted two experiments on healthy young adults: in the first experiment, participants were submitted to a navigational training based on path integration, while in the second experiment, participants completed a control training based on visual-perceptual learning. Performance in a set of memory tasks assessing episodic, semantic and short-term memory was compared among the pre- vs. post-training sessions. The results indicated a significant improvement of the episodic memory but not of the semantic or the short-term memory performance following the navigational training. In addition, no modulations of performance across the three memory tasks were observed following the control perceptual training. Our findings provide brand-new evidence of a potential causal association between mechanisms of egocentric navigation and episodic memory, thereby further supporting the phylogenetic continuity hypothesis between navigation and memory mechanisms as well as offering new insights about possible clinical applications of navigational trainings for memory functions/dysfunctions.


Assuntos
Memória Episódica , Navegação Espacial , Adulto Jovem , Humanos , Filogenia , Aprendizagem Espacial , Hipocampo , Poder Psicológico , Memória Espacial , Percepção Espacial
10.
Hippocampus ; 32(3): 137-152, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34961996

RESUMO

Regular exercise has numerous benefits for brain health, including the structure and function of the hippocampus. The hippocampus plays a critical role in memory function, and is altered in a number of psychiatric disorders associated with memory impairments (e.g., depression and schizophrenia), as well as healthy aging. While many studies have focused on how regular exercise may improve hippocampal integrity in older individuals, less is known about these effects in young to middle-aged adults. Therefore, we assessed the associations of regular exercise and cardiorespiratory fitness with hippocampal structure and function in these age groups. We recruited 40 healthy young to middle-aged adults, comprised of two groups (n = 20) who self-reported either high or low levels of exercise, according to World Health Organization guidelines. We assessed cardiorespiratory fitness using a graded exercise test (VO2 max) and hippocampal structure via manual tracing of T1-weighted magnetic resonance images. We also assessed hippocampal function using magnetic resonance spectroscopy to derive estimates of N-acetyl-aspartate concentration and hippocampal-dependent associative memory and pattern separation tasks. We observed evidence of increased N-acetyl-aspartate concentration and associative memory performance in individuals engaging in high levels of exercise. However, no differences in hippocampal volume or pattern separation capacity were observed between groups. Cardiorespiratory fitness was positively associated with left and right hippocampal volume and N-acetyl-aspartate concentration. However, no associations were observed between cardiorespiratory fitness and associative memory or pattern separation. Therefore, we provide evidence that higher levels of exercise and cardiorespiratory fitness are associated with improved hippocampal structure and function. Exercise may provide a low-risk, effective method of improving hippocampal integrity in an early-to-mid-life stage.


Assuntos
Aptidão Cardiorrespiratória , Hipocampo , Adulto , Idoso , Exercício Físico , Hipocampo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Transtornos da Memória , Pessoa de Meia-Idade
11.
Hippocampus ; 32(5): 335-341, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35231153

RESUMO

The left and right primate hippocampi (LH and RH) are thought to support distinct functions, but little is known about differences between the hemispheres at the neuronal level. We recorded single-neuron and local field potentials from the human hippocampus in epilepsy patients implanted with depth electrodes. We detected theta-frequency bouts of oscillatory activity while patients performed a visual recognition memory task. Theta appeared in bouts of 3.16 cycles, with sawtooth-shaped oscillations that had a prolonged downswing period. Outside the seizure onset zone, the average frequency of theta bouts was higher in the RH compared to the LH (6.0 vs. 5.3 Hz). LH theta bouts had lower amplitudes and a higher prevalence compared to the RH (26% vs. 21% of total time). Additionally, the RH contained a population of thin spiking visually tuned neurons that were not present in the LH. These data show that human theta appears in short oscillatory bouts whose properties vary between hemispheres, thereby revealing neurophysiological properties of the hippocampus that differ between the hemispheres.


Assuntos
Hipocampo , Ritmo Teta , Animais , Hipocampo/fisiologia , Humanos , Memória , Neurônios/fisiologia , Lobo Temporal , Ritmo Teta/fisiologia
12.
Eur J Neurosci ; 55(1): 107-120, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34841619

RESUMO

Working memory is a subcategory of short-term memory that voluntarily maintains behaviourally relevant information to prepare for a subsequent action. An established theory is that working memory is supported by the prefrontal cortex (PFC) for executive control, while the hippocampus (HPC) is largely involved in long-term episodic memory. Recent studies suggest that the HPC is also involved in perception and short-term storage. However, it remains unclear whether the HPC supports active maintenance of short-term memory as working memory. To address this question, we devised a new delayed matching-to-sample task in which two visual items were presented at different locations one by one as samples. The sequential presentations of sample stimuli allowed us to dissociate the contents of working memory (i.e., identities and locations of two samples) from the constituent perceived information of single samples. By applying representational similarity analysis (RSA) to the blood-oxygen-level-dependent (BOLD) signals of human participants, we investigated the delay activity after the two sample presentations. The results of the RSA showed that the right HPC signalled only the second sample as a conjunctional representation of its item identity and location. In contrast, the right PFC, including both lateral and medial parts, represented the conjunctional information of both samples. These results suggested that the HPC may support short-term memory for retrospective coding to retain information of the last event rather than for prospective coding coupled with working memory.


Assuntos
Hipocampo , Memória de Curto Prazo , Humanos , Córtex Pré-Frontal , Estudos Prospectivos , Estudos Retrospectivos
13.
Annu Rev Neurosci ; 37: 39-53, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25032492

RESUMO

Anatomically, the perirhinal cortex sits at the boundary between the medial temporal lobe and the ventral visual pathway. It has prominent interconnections not only with both these systems, but also with a wide range of unimodal and polymodal association areas. Consistent with these diverse projections, neurophysiological studies reveal a multidimensional set of mnemonic signals that include stimulus familiarity, within- and between-domain associations, associative recall, and delay-based persistence. This wide range of perirhinal memory signals not only includes signals that are largely unique to the perirhinal cortex (i.e., object familiarity), consistent with dual-process theories, but also includes a range of signals (i.e., associative flexibility and recall) that are strongly associated with the hippocampus, consistent with single-process theories. These neurophysiological findings have important implications for bridging the gap between single-process and dual-process models of medial temporal lobe function.


Assuntos
Tonsila do Cerebelo/fisiologia , Córtex Cerebral/fisiologia , Memória/fisiologia , Lobo Temporal/anatomia & histologia , Lobo Temporal/fisiologia , Tonsila do Cerebelo/anatomia & histologia , Animais , Córtex Cerebral/anatomia & histologia , Humanos , Vias Neurais/anatomia & histologia , Vias Neurais/fisiologia
14.
Neurobiol Learn Mem ; 194: 107662, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35870718

RESUMO

The relationship between sleep and memory consolidation has not been fully revealed. The current study aimed to investigate how a brief afternoon nap contributed to the consolidation of declarative and procedural memory by exploring the relationship between sleep characteristics (i.e., the durations of sleep stages and slow oscillation, slow-wave activity, and spindle activity extracted from sleep) and task performance and the relationship between delta, theta, alpha, and beta bands extracted from wake during task performance and task performance. Twenty-three healthy young adults underwent a paired associates learning task and a sequential finger-tapping task with easy and difficult levels and were tested for memory performance before and after the intervention (i.e., an about 30-min nap or stay awake). Electroencephalogram (EEG) signals were continously recorded during the whole experiment. Results revealed that a short afternoon nap improved movement speed for the procedural memory task, regardless of the task difficulty, but unaffected the performance on the declarative memory task. Besides, the improvement in movement speed for the easy procedural memory task was positively correlated with slow-wave activity (SWA) during non-rapid-eye-movement (NREM) sleep but negatively correlated with slow oscillation and spindle activity during sleep stage 2 and NREM sleep, and the improvement in the difficult procedural memory task correlated positively with SWA during NREM sleep. Moreover, performance on the easy declarative and procedural memory tasks was negatively correlated with the relative power of alpha or theta; whereas the alpha band was positively correlated with the difficult declarative memory performance. These findings suggested that a brief afternoon nap with NREM sleep would benefit procedural memory consolidation but not declarative memory; such contribution of napping to memory consolidation would be either explained by the sleep characteristics or physiological arousal during performing tasks; task difficulty would moderate the relationship between the declarative memory performance and EEGs during task performance.


Assuntos
Consolidação da Memória , Sono de Ondas Lentas , Humanos , Consolidação da Memória/fisiologia , Sono/fisiologia , Fases do Sono/fisiologia , Vigília/fisiologia , Adulto Jovem
15.
J Sleep Res ; 31(6): e13562, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35166422

RESUMO

The beneficial effects of sleep for memory consolidation are assumed to rely on the reactivation of memories in conjunction with the coordinated interplay of sleep rhythms like slow oscillations and spindles. Specifically, slow oscillations are assumed to provide the temporal frame for spindles to occur in the slow oscillations up-states, enabling a redistribution of reactivated information within hippocampal-neocortical networks for long-term storage. Memory reactivation can also be triggered externally by presenting learning-associated cues (like odours or sounds) during sleep, but it is presently unclear whether there is an optimal time-window for the presentation of such cues in relation to the phase of the slow oscillations. In the present within-subject comparison, participants (n = 16) learnt word-pairs visually presented with auditory cues of the first syllable. These syllables were subsequently used for real-time cueing either in the up- or down-state of endogenous slow oscillations. Contrary to our hypothesis, we found differences in memory performance neither between up- and down-state cueing, nor between word-pairs that were cued versus uncued. In the up-state cueing condition, higher amounts of rapid eye movement sleep were associated with better memory for cued contents, whereas higher amounts of slow-wave sleep were associated with better memory for uncued contents. Evoked response analyses revealed signs of cue processing in both conditions. Interestingly, both up- and down-state cueing evoked a similar spindle response with the induced slow oscillations up-state at ~1000 ms post-cue. We speculate that our cueing procedure triggered generalised reactivation processes that facilitated the consolidation of both cued and uncued memories irrespective of the slow oscillation phase.


Assuntos
Consolidação da Memória , Sono de Ondas Lentas , Humanos , Consolidação da Memória/fisiologia , Sinais (Psicologia) , Eletroencefalografia/métodos , Sono/fisiologia , Sono de Ondas Lentas/fisiologia
16.
J Sleep Res ; 31(3): e13385, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34850995

RESUMO

The relationship between sleep and cognition has long been recognized, with slow-wave sleep thought to play a critical role in long-term memory consolidation. Recent research has presented the possibility that non-invasive acoustic stimulation during sleep could enhance memory consolidation. Herein, we report a random-effects model meta-analysis examining the impact of this intervention on memory and sleep architecture in healthy adults. Sixteen studies were identified through a systematic search. We found a medium significant effect of acoustic stimulation on memory task performance (g = 0.68, p = .031) in young adults <35 years of age, but no statistically significant effect in adults >35 years of age (g = -0.83, p = .223). In young adults, there was a large statistically significant effect for declarative memory tasks (g = 0.87, p = .014) but no effect for non-declarative tasks (g = -0.25, p = .357). There were no statistically significant differences in polysomnography-derived sleep architecture values between sham and stimulation conditions in either young or older adults. Based on these results, it appears that acoustic stimulation during sleep may only be an effective intervention for declarative memory consolidation in young adults. However, the small number of studies in this area, their small sample sizes, the short-term nature of most investigations and the high between-studies heterogeneity highlight a need for high-powered and long-term experiments to better elucidate, and subsequently maximise, any potential benefits of this novel approach.


Assuntos
Consolidação da Memória , Sono de Ondas Lentas , Estimulação Acústica/métodos , Adulto , Idoso , Humanos , Consolidação da Memória/fisiologia , Polissonografia , Sono/fisiologia , Sono de Ondas Lentas/fisiologia , Adulto Jovem
17.
Mem Cognit ; 50(3): 459-463, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35288812

RESUMO

On the 50th anniversary of Tulving's introduction of the celebrated distinction between episodic and semantic memory, it seems more than fitting to revisit his proposal in light of recent conceptual and methodological advances in the field. This Special Issue of Memory & Cognition brings together researchers doing cutting-edge work at the intersection between episodic and semantic memory to showcase studies directly probing this psychological distinction, as well as articles that seek to provide conceptual and theoretical accounts to understand their interaction. The 14 articles presented here highlight the need to critically examine the way in which we conceptualize not only the relationship between episodic and semantic memory, but also the interplay between declarative and non-declarative memory, and the myriad implications of such conceptual changes. In many ways, we suggest this Special Issue might serve as a call to action for our field, inspiring future work to challenge pre-existing conceptions and stimulate new directions in this fast-moving field.


Assuntos
Memória Episódica , Semântica , Cognição , Humanos , Memória , Resolução de Problemas
18.
J Neurosci ; 40(3): 682-693, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31754015

RESUMO

Memory deficits are common in epilepsy patients. In these patients, the interictal EEG commonly shows interictal epileptiform discharges (IEDs). While IEDs are associated with transient cognitive impairments, it remains poorly understood why this is. We investigated the effects of human (male and female) hippocampal IEDs on single-neuron activity during a memory task in patients with medically refractory epilepsy undergoing depth electrode monitoring. We quantified the effects of hippocampal IEDs on single-neuron activity and the impact of this modulation on subjectively declared memory strength. Across all recorded neurons, the activity of 50 of 728 neurons were significantly modulated by IEDs, with the strongest modulation in the medial temporal lobe (33 of 416) and in particular the right hippocampus (12 of 58). Putative inhibitory neurons, as identified by their extracellular signature, were more likely to be modulated by IEDs than putative excitatory neurons (19 of 157 vs 31 of 571). Behaviorally, the occurrence of hippocampal IEDs was accompanied by a disruption of recognition of familiar images only if they occurred up to 2 s before stimulus onset. In contrast, IEDs did not impair encoding or recognition of novel images, indicating high temporal and task specificity of the effects of IEDs. The degree of modulation of individual neurons by an IED correlated with the declared confidence of a retrieval trial, with higher firing rates indicative of reduced confidence. Together, these data link the transient modulation of individual neurons by IEDs to specific declarative memory deficits in specific cell types, thereby revealing a mechanism by which IEDs disrupt medial temporal lobe-dependent declarative memory retrieval processes.SIGNIFICANCE STATEMENT Interictal epileptiform discharges (IEDs) are thought to be a cause of memory deficits in chronic epilepsy patients, but the underlying mechanisms are not understood. Utilizing single-neuron recordings in epilepsy patients, we found that hippocampal IEDs transiently change firing of hippocampal neurons and disrupted selectively the retrieval, but not encoding, of declarative memories. The extent of the modulation of the individual firing of hippocampal neurons by an IED predicted the extent of reduction of subjective retrieval confidence. Together, these data reveal a specific kind of transient cognitive impairment caused by IEDs and link this impairment to the modulation of the activity of individual neurons. Understanding the mechanisms by which IEDs impact memory is critical for understanding memory impairments in epilepsy patients.


Assuntos
Hipocampo/fisiopatologia , Transtornos da Memória/fisiopatologia , Transtornos da Memória/psicologia , Neurônios , Convulsões/fisiopatologia , Convulsões/psicologia , Adulto , Idoso , Eletroencefalografia , Epilepsia do Lobo Temporal , Feminino , Humanos , Masculino , Rememoração Mental , Pessoa de Meia-Idade , Reconhecimento Psicológico , Lobo Temporal/fisiopatologia , Adulto Jovem
19.
Neuroimage ; 245: 118637, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34644594

RESUMO

A wide spectrum of brain rhythms are engaged throughout the human cortex in cognitive functions. How the rhythms of various frequency ranges are coordinated across the space of the human cortex and time of memory processing is inconclusive. They can either be coordinated together across the frequency spectrum at the same cortical site and time or induced independently in particular bands. We used a large dataset of human intracranial electroencephalography (iEEG) to parse the spatiotemporal dynamics of spectral activities induced during formation of verbal memories. Encoding of words for subsequent free recall activated low frequency theta, intermediate frequency alpha and beta, and high frequency gamma power in a mosaic pattern of discrete cortical sites. A majority of the cortical sites recorded activity in only one of these frequencies, except for the visual cortex where spectral power was induced across multiple bands. Each frequency band showed characteristic dynamics of the induced power specific to cortical area and hemisphere. The power of the low, intermediate, and high frequency activities propagated in independent sequences across the visual, temporal and prefrontal cortical areas throughout subsequent phases of memory encoding. Our results provide a holistic, simplified model of the spectral activities engaged in the formation of human memory, suggesting an anatomically and temporally distributed mosaic of coordinated brain rhythms.


Assuntos
Eletroencefalografia/métodos , Memória/fisiologia , Adulto , Conjuntos de Dados como Assunto , Epilepsia/diagnóstico por imagem , Epilepsia/cirurgia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Tomografia Computadorizada por Raios X
20.
Hippocampus ; 31(6): 612-626, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33822428

RESUMO

Object naming involves accessing meaning and retrieving the associated word form from remote semantic memory. Historically, previously acquired semantic knowledge (i.e., remote semantic memory) was thought to be independent of the hippocampus via neocortical consolidation. This view is based on evidence demonstrating a dissociation in behavior in patients with hippocampal amnesia: amnesic patients are impaired in acquiring new vocabulary yet can name and define previously acquired words. More recently, the view that remote semantic memory is hippocampus-independent has been challenged by the documentation of disruptions in aspects of remote semantic memory in patients with hippocampal amnesia, particularly in language use and depth of semantic knowledge. Based on these findings, we hypothesized that the hippocampus plays a long-term role in remote semantic memory. We tested amnesic patients and demographically matched healthy comparison participants in an extensive naming task using photographic images of objects normalized for familiarity, object agreement, and visual complexity. Amnesic patients were less likely to correctly name objects than healthy comparison participants. Further, amnesic patients' performance worsened for words that were less familiar, more visually complex, and had less object agreement. These findings suggest that the hippocampus may play a long-term role in semantic memory processes, rather than a time-limited role in the initial acquisition of semantic information, and that hippocampal damage can disrupt object naming.


Assuntos
Amnésia , Hipocampo , Amnésia/diagnóstico por imagem , Hipocampo/diagnóstico por imagem , Humanos , Memória , Memória de Longo Prazo , Semântica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa