Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(12)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38931496

RESUMO

This paper proposes a cognitive radio network (CRN)-based hybrid wideband precoding for maximizing spectral efficiency in millimeter-wave relay-assisted multi-user (MU) multiple-input multiple-output (MIMO) systems. The underlying problem is NP-hard and non-convex due to the joint optimization of hybrid processing components and the constant amplitude constraint imposed by the analog beamformer in the radio frequency (RF) domain. Furthermore, the analog beamforming solution common to all sub-carriers adds another layer of design complexity. Two hybrid beamforming architectures, i.e., mixed and fully connected ones, are taken into account to tackle this problem, considering the decode-and-forward (DF) relay node. To reduce the complexity of the original optimization problem, an attempt is made to decompose it into sub-problems. Leveraging this, each sub-problem is addressed by following a decoupled design methodology. The phase-only beamforming solution is derived to maximize the sum of spectral efficiency, while digital baseband processing components are designed to keep interference within a predefined limit. Computer simulations are conducted by changing system parameters under different accuracy levels of channel-state information (CSI), and the obtained results demonstrate the effectiveness of the proposed technique. Additionally, the mixed structure shows better energy efficiency performance compared to its counterparts and outperforms benchmarks.

2.
Sensors (Basel) ; 20(16)2020 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-32823608

RESUMO

Since radio frequency (RF) signals can be used for both information transmission and energy harvesting, RF-based energy harvesting is capable of integrating with other existing communication techniques for providing better rate-energy tradeoff and quality-of-service. Within the context of an RF-based energy harvesting relaying network, a relay node not only acts as an intermediate node to help the delivery from source to destination, but also harvests energy from an RF dedicated source to prolong its lifetime. Thus, it brings diversity gain and coverage extension as well as provides extra energy for data transmission. This paper investigates a system that enables ambient backscattering communication-assisted simultaneous wireless information and power transfer at the relay. In the proposed system, a backscatter device plays a role as a relay to meet sustainable network coverage and to harvest ambient energy as well. With a power splitting (PS) scheme, we first investigate a nonlinear energy harvesting model at the relay node. In order to adapt to the channel gains, a dynamic PS ratio is required to perform well in changing environments. Moreover, we derive mathematical expressions for the outage probability and the achievable system throughput. Numerical results show the effects of various system parameters on the outage probability and the system throughput performance.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa