Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 295
Filtrar
1.
Int Endod J ; 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080721

RESUMO

AIM: The purpose of this study was to investigate the role of calcium-sensing receptor (CaSR) in the angiogenic differentiation of lipopolysaccharide (LPS)-treated human dental pulp cells (hDPCs). METHODOLOGY: The LPS-induced hDPCs were cultured in the medium with different combinations of CaSR agonist R568 and antagonist Calhex231. The cell proliferation, migration, and angiogenic capacity were measured by Cell Counting Kit-8 (CCK-8), scratch wound healing, and tube formation assays, respectively. Enzyme-linked immunosorbent assay (ELISA), quantitative real-time polymerase chain reaction (qRT-PCR), and western blot were conducted to determine the gene/protein expression of CaSR, inflammatory mediators, and angiogenic-associated markers. The activation of phosphoinositide 3-kinase (PI3K) and protein kinase B (Akt) was assessed by western blot analysis. RESULTS: The cell proliferation was elevated in response to R568 or Calhex231 exposure, but an enhanced cell migration was only found in cultures supplemented with Calhex231. Furthermore, R568 was found to potentiate the formation of vessel-like structure, up-regulated the protein expression of tumour necrosis factor (TNF)-α, vascular endothelial growth factor (VEGF), and stromal cell-derived factor (SDF)-1; comparable influences were also observed in R568-stimulated cells in the presence of PI3K inhibitor LY294002. In contrast, Calhex231 obviously inhibited the tube formation and VEGF protein level, whereas promoted the production of IL-6, TNF-α, and eNOS; however, in the presence of LY294002, Calhex231 showed a significant promotion on the protein expression of CaSR, VEGF, and SDF-1. In addition, R568 exhibited a promotive action on the Akt phosphorylation, which can be reversed by LY294002. CONCLUSIONS: Our results demonstrated that CaSR can regulate the angiogenic differentiation of LPS-treated hDPCs with an involvement of the PI3K/Akt signalling pathway.

2.
Int Endod J ; 57(2): 208-218, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38050666

RESUMO

AIM: Guanylate-binding protein 5 (GBP5) is an interferon (IFN)-inducible GTPase that plays a crucial role in the cell-autonomous immune response against microbial infections. In this study, we investigated the immunoregulatory role of GBP5 in the pathogenesis of dental pulpitis. METHODOLOGY: Gene-set enrichment analysis (GSEA) was utilized to evaluate the IFN-γ signalling pathway, and the differential expression of GBP mRNA in normal versus inflamed dental pulp tissues was screened, based on Gene Expression Omnibus (GEO) datasets associated with pulpitis. Both normal pulp tissues and inflamed pulp tissues were used for experiments. The expression of IFNs and GBPs was determined by qRT-PCR. Immunoblotting and double immunofluorescence were performed to examine the cellular localization of GBP5 in dental pulp tissues. For the functional studies, IFN-γ priming or lentivirus vector-delivered shRNA was used to, respectively, overexpress or knock down endogenous GBP5 expression in human dental pulp stem cells (HDPSCs). Subsequently, LPS was used to stimulate HDPSCs (overexpressing or with knocked-down GBP5) to establish an in vitro model of inflammation. qRT-PCR and ELISA were employed to examine the expression of proinflammatory cytokines (IL-6, IL-8 and IL-1ß) and cyclooxygenase 2 (COX2). Every experiment has three times of biological replicates and three technical replicates, respectively. Statistical analysis was performed using the Student's t-test and one-way ANOVA, and a p-value of <.05 was considered statistically significant. RESULTS: GSEA analysis based on the GEO dataset revealed a significant activation of the IFN-γ signalling pathway in the human pulpitis group. Among the human GBPs evaluated, GBP5 was selectively upregulated in inflamed dental pulp tissues and predominantly expressed in dental pulp cells. In vitro experiments demonstrated that IFN-γ robustly induced the expression of GBP5 in HDPSCs. Knockdown of GBP5 expression in HDPSCs significantly amplified the LPS-induced upregulation of inflammatory mediators (IL-6, IL-8, IL-1ß and COX2) both with and without IFN-γ priming. CONCLUSION: Our findings demonstrated that GBP5 partook in the pathogenesis of dental pulpitis. The involvement of GBP5 in pulpitis appeared to coordinate the regulation of inflammatory cytokines. Knockdown of GBP5 contributed to the exacerbation of LPS-mediated inflammation.


Assuntos
Pulpite , Humanos , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Polpa Dentária , Inflamação/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Pulpite/metabolismo
3.
Int J Mol Sci ; 25(2)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38256202

RESUMO

Homeostatic maintenance is essential for pulp function. Disrupting pulp homeostasis may lead to pulp degeneration, such as fibrosis and calcifications. Sensory nerves constitute a crucial component of the dental pulp. However, the precise involvement of sensory nerves in pulp homeostasis remains uncertain. In this study, we observed the short-term and long-term histological changes in the dental pulp after inferior alveolar nerve transection. Additionally, we cultured primary dental pulp cells (DPCs) from the innervated and denervated groups and compared indicators of cellular senescence and cellular function. The results revealed that pulp fibrosis occurred at 2 w after the operation. Furthermore, the pulp area, as well as the height and width of the pulp cavity, showed accelerated reductions after sensory denervation. Notably, the pulp area at 16 w after the operation was comparable to that of 56 w old rats. Sensory denervation induced excessive extracellular matrix (ECM) deposition and increased predisposition to mineralization. Furthermore, sensory denervation promoted the senescence of DPCs. Denervated DPCs exhibited decelerated cell proliferation, arrest in the G2/M phase of the cell cycle, imbalance in the synthesis and degradation of ECM, and enhanced mineralization. These findings indicate that sensory nerves play an essential role in pulp homeostasis maintenance and dental pulp cell fate decisions, which may provide novel insights into the prevention of pulp degeneration.


Assuntos
Calcinose , Doenças da Polpa Dentária , Animais , Ratos , Polpa Dentária , Vias Aferentes , Homeostase , Fibrose , Denervação
4.
Int J Mol Sci ; 25(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38999956

RESUMO

The transforming growth factor ß (TGFß) superfamily is a master regulator of development, adult homeostasis, and wound repair. Dysregulated TGFß signaling can lead to cancer, fibrosis, and musculoskeletal malformations. We previously demonstrated that TGFß receptor 2 (Tgfbr2) signaling regulates odontoblast differentiation, dentin mineralization, root elongation, and sensory innervation during tooth development. Sensory innervation also modulates the homeostasis and repair response in adult teeth. We hypothesized that Tgfbr2 regulates the neuro-pulpal responses to dentin injury. To test this, we performed a shallow dentin injury with a timed deletion of Tgfbr2 in the dental pulp mesenchyme of mice and analyzed the levels of tertiary dentin and calcitonin gene-related peptide (CGRP) axon sprouting. Microcomputed tomography imaging and histology indicated lower dentin volume in Tgfbr2cko M1s compared to WT M1s 21 days post-injury, but the volume was comparable by day 56. Immunofluorescent imaging of peptidergic afferents demonstrated that the duration of axon sprouting was longer in injured Tgfbr2cko compared to WT M1s. Thus, CGRP+ sensory afferents may provide Tgfbr2-deficient odontoblasts with compensatory signals for healing. Harnessing these neuro-pulpal signals has the potential to guide the development of treatments for enhanced dental healing and to help patients with TGFß-related diseases.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina , Polpa Dentária , Dentina , Receptor do Fator de Crescimento Transformador beta Tipo II , Transdução de Sinais , Animais , Polpa Dentária/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo , Camundongos , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/genética , Dentina/metabolismo , Camundongos Knockout , Odontoblastos/metabolismo
5.
BMC Oral Health ; 24(1): 148, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38297241

RESUMO

BACKGROUND: This study aimed to investigate the effects of various toll-like receptor (TLR) and C-type lectin receptor (CLR) ligands on osteogenic differentiation in human dental pulp stem cells (hDPSCs). METHODS: hDPSCs were cultured and treated with various concentrations (0.01, 0.1, 1.0, and 10 µg/mL) of TLR or CLR agonists (PG-LPS, E.coli LPS, poly(I:C), Pam3CSK4, Furfurman, and Zymosan). Cell viability was determined by MTT assay. The effects of TLR and CLR agonists on osteogenic differentiation of hDPSCs were measured by alkaline phosphatase (ALP) activity, Alizarin Red S staining, and Von Kossa staining. In addition, the mRNA expression of osteogenesis-related genes (ALP, COL1A1, RUNX2, OSX, OCN and DMP1) was examined by RT-qPCR. A non-parametric analysis was employed for the statistical analyses. The statistically significant difference was considered when p < 0.05. RESULTS: Treatment with TLR and CLR agonists was associated with an increase in hDPSCs' colony-forming unit ability. Compared with the control group, TLR and CLR agonists significantly inhibited the osteogenic differentiation of hDPSCs by decreasing the ALP activity, mineralised nodule formation, and mRNA expression levels of osteogenesis-related genes (ALP, COL1A1, RUNX2, OSX, OCN and DMP1). The inhibition of TRIF but not Akt signalling rescued the effects of TLR and CLR agonist attenuating hDPSCs' mineralisation. CONCLUSIONS: The activation of TLRs or CLRs exhibited an inhibitory effect on osteogenic differentiation of hDPSCs via the TRIF-dependent signalling pathway.


Assuntos
Polpa Dentária , Osteogênese , Humanos , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Diferenciação Celular , Receptores Toll-Like/metabolismo , Células-Tronco , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/farmacologia , RNA Mensageiro/metabolismo , Células Cultivadas
6.
BMC Oral Health ; 24(1): 646, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824565

RESUMO

BACKGROUND: Immature teeth with necrotic pulps present multiple challenges to clinicians. In such cases, regenerative endodontic procedures (REPs) may be a favorable strategy. Cells, biomaterial scaffolds, and signaling molecules are three key elements of REPs. Autologous human dental pulp cells (hDPCs) play an important role in pulp regeneration. In addition, autologous platelet concentrates (APCs) have recently been demonstrated as effective biomaterial scaffolds in regenerative dentistry, whereas the latest generation of APCs-concentrated growth factor (CGF), especially liquid phase CGF (LPCGF)-has rarely been reported in REPs. CASE PRESENTATION: A 31-year-old woman presented to our clinic with the chief complaint of occlusion discomfort in the left mandibular posterior region for the past 5 years. Tooth #35 showed no pulp vitality and had a periodontal lesion, and radiographic examination revealed that the tooth exhibited extensive periapical radiolucency with an immature apex and thin dentin walls. REP was implemented via transplantation of autologous hDPCs with the aid of LPCGF. The periodontal lesion was managed with simultaneous periodontal surgery. After the treatment, the tooth was free of any clinical symptoms and showed positive results in thermal and electric pulp tests at 6- and 12-month follow-ups. At 12-month follow-up, radiographic evidence and three-dimensional models, which were reconstructed using Mimics software based on cone-beam computed tomography, synergistically confirmed bone augmentation and continued root development, indicating complete disappearance of the periapical radiolucency, slight lengthening of the root, evident thickening of the canal walls, and closure of the apex. CONCLUSION: hDPCs combined with LPCGF represents an innovative and effective strategy for cell-based regenerative endodontics.


Assuntos
Polpa Dentária , Endodontia Regenerativa , Humanos , Feminino , Adulto , Polpa Dentária/citologia , Endodontia Regenerativa/métodos , Necrose da Polpa Dentária/terapia , Transplante de Células/métodos , Transplante Autólogo
7.
Oral Dis ; 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37811593

RESUMO

OBJECTIVES: Connexin43 (Cx43) is involved in the inflammation of many tissue types. Dental caries is infectious disease resulting from mineralized tissue dissolution by a specific bacterial population, causing pulp inflammation. However, Cx43's role in dental pulp remains unclear. Here, we investigated the function of Cx43 during pulp inflammation. MATERIALS AND METHODS: We constructed a dentin injury model in Sprague-Dawley rats to investigate changes in Cx43 expression during pulp inflammation. Cx43 was inhibited in human dental pulp cells (hDPCs) that had been stimulated with lipopolysaccharide (LPS) to investigate the effect of Cx43 on inflammatory response. Promotion of TLR4-NF-κB pathway activity and special Cx43 channel inhibitors were used to clarify the function of Cx43 in hDPCs. RESULTS: Dentin injury led to low-level inflammation in dental pulp. Following dentin injury, Cx43 expression initially decreased before gradually recovering to normal levels. Cx43 inhibition reduced LPS-induced expression of inflammatory cytokines and NF-κB pathway activity. Promotion of NF-κB pathway activity counteracted the effect of Cx43 in hDPCs. Furthermore, inhibition of Cx43 hemichannels reduced LPS-induced inflammatory cytokine expression. CONCLUSIONS: Cx43 is involved in inflammation of dental pulp, while its inhibition reduced LPS-induced inflammation in hDPCs through NF-κB pathway via blockage of hemichannels.

8.
Int Endod J ; 56(11): 1385-1398, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37632694

RESUMO

AIM: The primary goal of this study was to investigate the potential effects of A5G81 in inducing reparative dentine (RD) formation both in vitro and in vivo. METHODOLOGY: Cell adhesion was observed by crystal violet staining and quantified by Sodium Dodecyl Sulphate (SDS) extraction. Cell proliferation was investigated using Cell Counting Kit-8 (CCK-8) assay. Spreading of cytoskeleton was visualized using immunofluorescence staining. Protein expression level of Akt signalling pathway was compared in a human Akt pathway phosphorylation array. Genes that were up or downregulated by A5G81 were identified by RNA sequencing. The mRNA expression of odontoblastic markers was detected by quantitative real-time polymerase chain reaction (qPCR). Moreover, mineralization of human dental pulp cells (hDPCs) was visualized by alizarin red staining and quantified using cetylpyridinium chloride (CPC). A direct pulp-capping model was established in SD rats and the RD formation at 2 weeks after operation was observed using HE staining. RESULTS: A5G81 (optimal coating concentration: 0.5 mg/mL) promoted hDPCs adhesion and proliferation to a level that was similar to Type I collagen (COL-1). Meanwhile, A5G81 activated Akt signalling pathway, albeit to a lesser extent than COL-1. An inhibition test indicated that A5G81 induced hDPCs adhesion by activating PI3K pathway. A5G81 induced the expression of ECM remodelling genes and odontoblastic genes, which were demonstrated by RNA-seq and qPCR, respectively. In addition, A5G81 efficiently accelerated the mineralization of hDPCs in both immobilized and soluble forms, a property that makes it more applicable in dental clinic. Finally, the pulp-capping study in rats suggested that use of A5G81 could successfully induce the formation of RD within 2 weeks. CONCLUSION: Coating of A5G81 to non-tissue culture-treated polystyrene facilitates spreading, proliferation and differentiation of hDPCs, resulting in rapid RD formation in artificially exposed pulp.

9.
Int Endod J ; 56(4): 475-485, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36565046

RESUMO

AIM: To explore the effects of phase-transited lysozyme (PTL) coated dentine slices on cell adhesion, migration and odontogenic differentiation of human dental pulp cells (HDPCs). METHODOLOGY: Cell growth and cell cycle analysis were conducted to verify the biocompatibility of PTL for HDPCs. Cell adhesion, cell morphology and proliferation were explored by DiI staining, Scanning electron microscopy and MTT assay. Cell migration was investigated by Transwell assay. The effects of PTL on odontogenesis and mineralization of HDPCs were assessed by real-time quantitative polymerase chain reaction and Western blot. The mineralization of HDPCs was evaluated by Alizarin red staining. HDPCs were isolated from extracted third molars. The level of statistically significant difference was accepted at p < .05. RESULTS: PTL showed no negative effect on cell cycle of HDPCs and compared with the blank group, HDPCs labelled with DiI staining showed significantly more adhered cells at 48 h (p < .05), extending cell processes and more finger-like or reticular pseudopodia on PTL-coated dentine slices. The results of MTT and Transwell assay showed that PTL promoted the proliferation (p < .05) and migration (p < .01) of HDPCs, respectively. Compared with the blank group, the gene expression of dentine sialophosphoprotein (DSPP), osteopontin and bone sialoprotein in HDPCs cultured on PTL was significantly upregulated on day 3 and 7 (p < .05), while the protein expression of DSPP showed no significant change on both day 7 and day 14. Alizarin red staining showed that PTL promoted more mineralization nodules formation of HDPCs (p < .05). CONCLUSIONS: PTL promoted the adhesion, proliferation and migration of HDPCs on dentine slices, and positively affected odontogenic differentiation and mineralization of HDPCs.


Assuntos
Polpa Dentária , Muramidase , Humanos , Muramidase/farmacologia , Diferenciação Celular , Odontogênese , Células Cultivadas , Proliferação de Células , Fosfatase Alcalina/metabolismo , Proteínas da Matriz Extracelular/metabolismo
10.
Int Endod J ; 56(7): 869-880, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37102402

RESUMO

AIM: Pyroptosis is a type of inflammatory cell death and is related to pulpitis and apical periodontitis. In this study, the aim was to investigate how periodontal ligament fibroblasts (PDLFs) and dental pulp cells (DPCs) respond to pyroptotic stimuli and explore whether dimethyl fumarate (DMF) could block pyroptosis in PDLFs and DPCs. METHODOLOGY: Three methods (stimulation with lipopolysaccharide [LPS] plus nigericin, poly(dA:dT) transfection and LPS transfection) were used to induce pyroptosis in PDLFs and DPCs, two types of fibroblasts related to pulpitis and apical periodontitis. THP-1 cell was used as a positive control. Afterwards, PDLFs and DPCs were treated with or without DMF before inducing pyroptosis to examine the inhibitory effect of DMF. Pyroptotic cell death was measured by lactic dehydrogenase (LDH) release assays, cell viability assays, propidium iodide (PI) staining and flow cytometry. The expression levels of cleaved gasdermin D N-terminal (GSDMD NT), caspase-1 p20, caspase-4 p31 and cleaved PARP were examined by immunoblotting. Immunofluorescence analysis was used to detect the cellular distribution of GSDMD NT. RESULTS: Periodontal ligament fibroblasts and DPCs were more sensitive to cytoplasmic LPS-induced noncanonical pyroptosis than to canonical pyroptosis induced by stimulation with LPS priming plus nigericin or by poly(dA:dT) transfection. In addition, treatment with DMF attenuated cytoplasmic LPS-induced pyroptotic cell death in PDLFs and DPCs. Mechanistically, it was shown that the expression and plasma membrane translocation of GSDMD NT were inhibited in DMF-treated PDLFs and DPCs. CONCLUSIONS: This study indicates that PDLFs and DPCs are more sensitive to cytoplasmic LPS-induced noncanonical pyroptosis and that DMF treatment blocks pyroptosis in LPS-transfected PDLFs and DPCs by targeting GSDMD, suggesting DMF might be a promising drug for the management of pulpitis and apical periodontitis.


Assuntos
Periodontite Periapical , Pulpite , Humanos , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Piroptose , Fumarato de Dimetilo/farmacologia , Fumarato de Dimetilo/metabolismo , Pulpite/metabolismo , Ligamento Periodontal , Polpa Dentária , Nigericina/metabolismo , Nigericina/farmacologia , Fibroblastos , Periodontite Periapical/metabolismo
11.
Clin Oral Investig ; 27(3): 1207-1214, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36208328

RESUMO

OBJECTIVES: To explore the inflammatory and differentiation response in inflamed dental pulp cells (DPCs) induced by lipopolysaccharide (LPS) under different conditions with Biodentine and mineral trioxide aggregate (MTA) treatment. MATERIALS AND METHODS: DPCs were treated with 0.001-1 µg/mL LPS for different periods to induce inflammation. Normal and inflamed DPCs were further treated with 0.14 mg/mL Biodentine or 0.13 mg/mL MTA for different periods. mRNA expression level of IL-6, IL-8 and ALP were analysed by qPCR. DSPP protein expression was detected by western blot. The data were analysed by the Mann-Whitney test, unpaired t test or two-way ANOVA. RESULTS: After treatment for different times and with different concentrations of LPS, different severity of pulp inflammation was revealed by the expressions of IL-6 and IL-8. Higher concentrations of LPS induced higher IL-6 and IL-8 expressions, and these expressions first increased and then decreased (p < 0.0001). At 96 and 192 h, Biodentine significantly suppressed IL-6 expression in both normal and inflamed DPCs (p < 0.05). At 48 and 96 h, Biodentine suppressed ALP expression in both normal and inflamed DPCs (p < 0.05). At 48 and 96 h, Biodentine induced DSPP expressions in both normal and inflamed DPCs (p < 0.05). CONCLUSION: Biodentine enhanced more DSPP differentiation of both normal and inflamed DPCs under different treatment durations than MTA. CLINICAL RELEVANCE: The prognosis of vital pulp therapy may depend on the severity of pulp inflammation which is difficult to be determined in clinical settings. Therefore, Biodentine may enhance odontogenic differentiation in different severity of pulp inflammation imply its clinical indications.


Assuntos
Polpa Dentária , Lipopolissacarídeos , Humanos , Compostos de Alumínio/farmacologia , Compostos de Cálcio/farmacologia , Combinação de Medicamentos , Inflamação/tratamento farmacológico , Interleucina-6 , Interleucina-8 , Óxidos/farmacologia , Silicatos/farmacologia , Proteínas da Matriz Extracelular/metabolismo , Fosfoproteínas/metabolismo , Sialoglicoproteínas/metabolismo
12.
J Formos Med Assoc ; 122(1): 47-57, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36031486

RESUMO

BACKGROUND/PURPOSE: The signaling mechanisms for Porphyromonas gingivalis lipopolysaccharide (PgLPS)-induced inflammation in human dental pulp cells are not fully clarified. This in vitro study aimed to evaluate the involvement of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway in PgLPS-induced pulpal inflammation. METHODS: Human dental pulp cells (HDPCs) were challenged with PgLPS with or without pretreatment and coincubation with a PI3K/Akt inhibitor (LY294002). The gene or protein levels of PI3K, Akt, interleukin (IL)-6, IL-8, alkaline phosphatase (ALP), osteocalcin and osteonectin were analyzed by reverse transcription polymerase chain reaction (PCR), real-time PCR, western blotting, and immunofluorescent staining. In addition, an enzyme-linked immunosorbent assay was used to analyze IL-6 and IL-8 levels in culture medium. RESULTS: In response to 5 µg/ml PgLPS, IL-6, IL-8, and PI3K, but not Akt mRNA expression of HDPCs, was upregulated. IL-6, IL-8, PI3K, and p-Akt protein levels were stimulated by 10-50 µg/ml of PgLPS in HDPCs. PgLPS also induced IL-6 and IL-8 secretion at concentrations higher than 5 µg/ml. Pretreatment and co-incubation by LY294002 attenuated PgLPS-induced IL-6 and IL-8 mRNA expression in HDPCs. The mRNA expression of ALP, but not osteocalcin and osteonectin, was inhibited by higher concentrations of PgLPS in HDPCs. CONCLUSION: P. gingivalis contributes to pulpal inflammation in HDPCs by dysregulating PI3K/Akt signaling pathway to stimulate IL-6 and IL-8 mRNA/protein expression and secretion. These results are useful for understanding the pulpal inflammation and possible biomarkers of inflamed pulp diagnosis and treatment.


Assuntos
Polpa Dentária , Interleucina-6 , Interleucina-8 , Lipopolissacarídeos , Porphyromonas gingivalis , Proteínas Proto-Oncogênicas c-akt , Pulpite , Humanos , Polpa Dentária/imunologia , Polpa Dentária/microbiologia , Interleucina-6/genética , Interleucina-6/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , Osteonectina/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Porphyromonas gingivalis/imunologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Pulpite/imunologia , Pulpite/microbiologia
13.
BMC Oral Health ; 23(1): 991, 2023 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-38071305

RESUMO

BACKGROUND: Pulp inflammation is complex interactions between different types of cells and cytokines. To mimic the interactions of different types of cells in inflamed dental pulp tissues, dental pulp cells (DPCs) were cocultured with different ratios of macrophages (THP-1) or LPS treatment. METHODS: DPCs were cocultured with various ratios of THP-1, then photographed cell morphology and determined cell viability by MTT assay at preset times. Total RNA was also extracted to measure the inflammation marker-IL-6 and IL-8 expressions by RT-Q-PCR. The DPCs and THP-1 were treated with 0.01 - 1µg/ml lipopolysaccharide (LPS) and extract RNA at preset times, and detected IL-6 and IL-8 expression. DPCs were cocultured with various ratios of THP-1 with 0.1 µg/mL LPS, and detected IL-6 and IL-8 expression after 24 and 48 h. The data were analyzed by unpaired t-test or Mann-Whitney test. Differences were considered statistically significant when p < 0.05. RESULTS: THP-1 and DPCs coculture models did not suppress the viability of DPCs and THP-1. Cocultured with various ratios of THP-1 could increase IL-6 and IL-8 expressions of DPCs (p = 0.0056 - p < 0.0001). The expressions of IL-6 and IL-8 were stronger in higher ratio groups (p = 0.0062 - p < 0.0001). LPS treatment also induced IL-6 and IL-8 expressions of DPCs and THP-1 (p = 0.0179 - p < 0.0001 and p = 0.0189 - p < 0.0001, separately). Under the presence of 0.1 µg/mL LPS, DPCs cocultured with THP-1 for 24 h also enhanced IL-6 and IL-8 expression (p = 0.0022). After cocultured with a higher ratio of THP-1 for 48 h, IL-6 and IL-8 expressions were even stronger in the presence of LPS (p = 0.0260). CONCLUSIONS: Coculturing dental pulp cells and macrophages under LPS treatment aggravate the inflammatory process. The responses of our models were more severe than traditional inflamed dental models and better represented what happened in the real dental pulp. Utilizing our models to explore the repair and regeneration in endodontics will be future goals.


Assuntos
Polpa Dentária , Lipopolissacarídeos , Humanos , Técnicas de Cocultura , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Inflamação , Macrófagos , RNA/metabolismo
14.
Curr Issues Mol Biol ; 44(11): 5691-5699, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36421669

RESUMO

The survival rate of root non-vital teeth is lower than that of vital teeth. Therefore, to preserve the dental pulp is very important. The vascular endothelial growth factor (VEGF) is the most potent angiogenic factor involved in the vitality of dental pulp including reparative dentin formation. Caffeic acid phenethyl ester (CAPE) is a physiologically active substance of propolis and has some bioactivities such as anti-inflammatory effects. However, there are no reports on the effects of CAPE on dental pulp inflammation. In this study, we investigated the effects of CAPE on VEGF and inflammatory cytokine production in human dental pulp cells (HDPCs) to apply CAPE to an ideal dental pulp protective agent. We found that CAPE induced VEGF production from HDPCs. Moreover, CAPE induced the phosphorylation of p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinases (ERK), and stress-activated protein kinase/c-Jun N-terminal kinase (SAP/JNK) in HDPCs. Furthermore, CAPE inhibited C-X-C motif chemokine ligand 10 (CXCL10) production in Pam3CSK4- and tumor necrosis factor-alpha (TNF-α)-stimulated HDPCs. In conclusion, these results suggest that CAPE might be useful as a novel biological material for vital pulp therapy by exerting the effects of VEGF production and anti-inflammatory activities.

15.
Cell Immunol ; 380: 104589, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36084401

RESUMO

The pulp of human teeth contains a population of self-renewing stem cells that can regulate the functions of immune cells. When applied to patients, these cells can protect tissues from damage by excessive inflammation. We confirm that dental pulp cells effectively inhibit the proliferation and activation of cytotoxic T cells in vitro, and show that they carry high levels of CD73, a key enzyme in the conversion of pro-inflammatory extracellular ATP to immunosuppressive adenosine. Given their accessibility and abundance, as well as their potential for allogeneic administration, dental pulp cells provide a valuable source for immunomodulatory therapy.


Assuntos
Adenosina , Polpa Dentária , 5'-Nucleotidase/metabolismo , Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Proliferação de Células , Humanos
16.
Mol Cell Biochem ; 477(12): 2871-2881, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35699827

RESUMO

The aim of this study is to investigate the role of calcium-sensing receptor (CaSR) in the expression of inflammatory mediators of lipopolysaccharide (LPS)-treated human dental pulp cells (hDPCs). The expression profile of CaSR in LPS-simulated hDPCs was detected using immunofluorescence, real time quantitative PCR (RT-qPCR), and Western blot analyses. Then, its regulatory effects on the expression of specific inflammatory mediators such as interleukin (IL)-1ß, IL-6, cyclooxygenase 2 (COX2)-derived prostaglandin E2 (PGE2), tumor necrosis factor (TNF)-α, and IL-10 were determined by RT-qPCR and enzyme-linked immunosorbent assay (ELISA). LPS significantly downregulated the gene expression of CaSR, but upregulated its protein expression level in hDPCs. Treatments by CaSR agonist R568 or its antagonist Calhex231, and their combinations with protein kinase B (AKT) inhibitor LY294002 showed obvious effects on the expression of selected inflammatory mediators in a time-dependent manner. Meanwhile, an opposite direction was found between the action of R568 and Calhex231, as well as the expression of the pro- (IL-1ß, IL-6, COX2-derived PGE2, and TNF-α) and anti-inflammatory (IL-10) mediators. The results provide the first evidence that CaSR-phosphatidylinositol-3 kinase (PI3K)-AKT-signaling pathway is involved in the release of inflammatory mediators in LPS-treated hDPCs, suggesting that the activation or blockade of CaSR may provide a novel therapeutic strategy for the treatment of pulp inflammatory diseases.


Assuntos
Polpa Dentária , Mediadores da Inflamação , Receptores de Detecção de Cálcio , Humanos , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Polpa Dentária/citologia , Polpa Dentária/metabolismo , Mediadores da Inflamação/metabolismo , Interleucina-10 , Interleucina-6 , Lipopolissacarídeos , NF-kappa B/metabolismo , Prostaglandinas E , Proteínas Proto-Oncogênicas c-akt , Receptores de Detecção de Cálcio/genética , Receptores de Detecção de Cálcio/metabolismo , Fator de Necrose Tumoral alfa
17.
J Periodontal Res ; 57(1): 162-172, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34826339

RESUMO

BACKGROUND AND OBJECTIVE: Exosomes are small vesicles secreted from many cell types. Their biological effects largely depend on their cellular origin and the physiological state of the originating cells. Exosomes secreted by mesenchymal stem cells exert therapeutic effects against multiple diseases and may serve as potential alternatives to stem cell therapies. We previously established and characterized human leukocyte antigen (HLA) haplotype homo (HHH) dental pulp cell (DPC) lines from human wisdom teeth. In this study, we aimed to investigate the effect of local administration of HHH-DPC exosomes in a mouse model of periodontitis. METHODS: Exosomes purified from HHH-DPCs were subjected to particle size analysis, and expression of exosome markers was confirmed by western blotting. We also confirmed the effect of exosomes on the migration of both HHH-DPCs and mouse osteoblastic MC3T3-E1 cells. A mouse experimental periodontitis model was used to evaluate the effect of exosomes in vivo. The morphology of alveolar bone was assessed by micro-computed tomography (µCT) and histological analysis. The effect of exosomes on osteoclastogenesis was evaluated using a co-culture system. RESULTS: The exosomes purified from HHH-DPCs were homogeneous and had a spherical membrane structure. HHH-DPC exosomes promoted the migration of both human DPCs and mouse osteoblastic cells. The MTT assay showed a positive effect on the proliferation of human DPCs, but not on mouse osteoblastic cells. Treatment with HHH-DPC exosomes did not alter the differentiation of osteoblastic cells. Imaging with µCT revealed that the exosomes suppressed alveolar bone resorption in the mouse model of periodontitis. Although no change was apparent in the dominance of TRAP-positive osteoclast-like cells in decalcified tissue sections upon exosome treatment, HHH-DPC exosomes significantly suppressed osteoclast formation in vitro. CONCLUSIONS: HHH-DPC exosomes stimulated the migration of human DPCs and mouse osteoblastic cells and effectively attenuated bone loss due to periodontitis.


Assuntos
Perda do Osso Alveolar , Exossomos , Periodontite , Perda do Osso Alveolar/diagnóstico por imagem , Perda do Osso Alveolar/terapia , Animais , Diferenciação Celular , Polpa Dentária , Camundongos , Periodontite/terapia , Microtomografia por Raio-X
18.
Exp Cell Res ; 400(2): 112495, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33524362

RESUMO

Pulpitis refers to inflammation of the inner pulp by invading microbes, and tissue repair occurs due to odontogenic differentiation of human dental pulp cells (hDPCs) with multidifferentiation potential. Long noncoding RNAs (lncRNAs) can modulate numerous pathological and biological processes; however, the role of lncRNAs in the inflammation and regeneration of the dentin-pulp complex in pulpitis is unclear. Here, we performed high-throughput sequencing to identify differentially expressed lncRNAs between human normal and inflamed pulp and concluded that lncMEG3 (lncRNA maternally expressed gene 3, MEG3) was significantly upregulated in both inflamed pulp and LPS-treated hDPCs. MEG3 expression in the pulp tissue was detected using the RNAscope® technique. RNA pulldown assays identified the MEG3-interacting proteins and the potential mechanisms. With MEG3 knockdown, we investigated the role of MEG3 in the secretion of inflammatory cytokines in LPS-treated hDPCs and odontogenic differentiation of hDPCs. MEG3 downregulation inhibited the secretion of TNF-α, IL-1ß and IL-6 in LPS-treated hDPCs, and the p38/MAPK signaling pathway may be related to this effect. MEG3 knockdown promoted odontogenic differentiation of hDPCs by regulating the Wnt/ß-catenin signaling pathway. Our study suggested that MEG3 has a negative effect on inflammation and regeneration of the dentin-pulp complex in pulpitis.


Assuntos
Diferenciação Celular , Polpa Dentária/citologia , Inflamação/patologia , Lipopolissacarídeos/efeitos adversos , Odontogênese , Pulpite/patologia , RNA Longo não Codificante/genética , Adolescente , Adulto , Apoptose , Biomarcadores/metabolismo , Proliferação de Células , Células Cultivadas , Citocinas/metabolismo , Polpa Dentária/metabolismo , Regulação da Expressão Gênica , Humanos , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/metabolismo , Pulpite/genética , Pulpite/metabolismo , Adulto Jovem
19.
J Clin Lab Anal ; 36(5): e24371, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35334501

RESUMO

BACKGROUND: Vascular cell adhesion molecule (VCAM-1) mediates pulpitis via regulating interleukin (IL)-1ß. microRNA (miR)-126 was reported to regulate the VCAM-1 under many different pathophysiological circumstances. We investigated variations of miR-126 and VCAM-1 in inflamed patient pulp tissues and determined potential roles of miR-126 in pulpitis using human dental pulp cells (hDPCs) in vitro. METHODS: We quantitatively measured the transcripts of miR-126 and VCAM-1 in inflamed human pulp tissues using qRT-PCR and compared with those from healthy human pulp tissues. In addition, we transfected miR-126 in hDPCs using plasmid DNA (pDNA)-encoding miR-126 delivered by polyethylenimine (PEI) nanoparticles. RESULTS: The irreversible pulpitis significantly reduced miR-126 and increased the transcript of VCAM-1 in pulp tissues (p < 0.05). pDNA-encoding miR-126 delivered PEI nanoparticles and effectively upregulated the expression of miR-126 in hDPCs (p < 0.05). The overexpression of miR-126 could effectively suppress the transcripts and protein levels of VCAM-1 and IL-1ß induced by Pg-LPS at 100ng/mL in DPCs (p < 0.05). CONCLUSIONS: miR-126 is involved in pulpitis and downregulated the VCAM-1 and IL-1ß in DPCs. miR-126 may be a potential target to attenuate the inflammation of pulpitis.


Assuntos
MicroRNAs , Pulpite , Células Cultivadas , Polpa Dentária , Humanos , Interleucina-1beta/genética , Lipopolissacarídeos/farmacologia , MicroRNAs/genética , Pulpite/induzido quimicamente , Pulpite/metabolismo , Molécula 1 de Adesão de Célula Vascular/genética , Molécula 1 de Adesão de Célula Vascular/metabolismo
20.
Int Endod J ; 55 Suppl 1: 3-13, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35030284

RESUMO

BACKGROUND: The pulp contains a resident population of stem cells which can be stimulated to differentiate in order to repair the tooth by generating a mineralized extracellular matrix. Over recent decades there has been considerable interest in utilizing in vitro cell culture models to study dentinogenesis, with the aim of developing regenerative endodontic procedures, particularly where some vital pulp tissue remains. OBJECTIVES: The purpose of this review is to provide a structured oversight of in vitro research methodologies which have been used to study human pulp mineralization processes. METHOD: The literature was screened in the PubMed database up to March 2021 to identify manuscripts reporting the use of human dental pulp cells to study mineralization. The dataset identified 343 publications initially which were further screened and consequently 166 studies were identified and it was methodologically mined for information on: i) study purpose, ii) source and characterization of cells, iii) mineralizing supplements and concentrations, and iv) assays and markers used to characterize mineralization and differentiation, and the data was used to write this narrative review. RESULTS: Most published studies aimed at characterizing new biological stimulants for mineralization as well as determining the effect of scaffolds and dental (bio)materials. In general, pulp cells were isolated by enzymatic digestion, although the pulp explant technique was also common. For enzymatic digestion, a range of enzymes and concentrations were utilized, although collagenase type I and dispase were the most frequent. Isolated cells were not routinely characterized using either fluorescence-activated cell sorting (FACS) and magnetic-activated cell sorting (MACS) approaches and there was little consistency in terming cultures as dental pulp cells or dental pulp stem cells. A combination of media supplements, at a range of concentrations, of dexamethasone, ascorbic acid and beta-glycerophosphate, were frequently applied as the basis for the experimental conditions. Alizarin Red S (ARS) staining was the method of choice for assessment of mineralization at 21-days. Alkaline phosphatase assay was relatively frequently applied, solely or in combination with ARS staining. Further assessment of differentiation status was performed using transcript or protein markers, with dentine sialophosphoprotein (DSPP), osteocalcin and dentine matrix protein-1 (DMP -1), the most frequent. DISCUSSION: While this review highlights variability among experimental approaches, it does however identify a consensus experimental approach. CONCLUSION: Standardization of experimental conditions and sustained research will significantly benefit endodontic patient outcomes in the future.


Assuntos
Polpa Dentária , Sialoglicoproteínas , Fosfatase Alcalina/metabolismo , Técnicas de Cultura de Células , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Proteínas da Matriz Extracelular/metabolismo , Humanos , Fosfoproteínas/metabolismo , Sialoglicoproteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa