Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
1.
Toxicol Appl Pharmacol ; 482: 116783, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38061611

RESUMO

BACKGROUND: Povidone­iodine (PVP-I) is an effective and commonly used broad-spectrum antiseptic; limited information exists around its long-term safety and impact on endocrine disruption. We assessed the dermal toxicity and toxicokinetics following a once-daily application of 7.5% (w/v) and 10% (w/v) PVP-I in Göttingen Minipigs® for up to 39 weeks. METHODS: An in vivo study was conducted in male (n = 27) and female (n = 27) minipigs. Animals were randomized into untreated control, 7.5% and 10% PVP-I, and matching vehicle treatment groups. Animals were assessed for general in-life measurements, including skin irritation and organ weights. Serum samples were analyzed for PVP, total iodine, triiodothyronine [T3], thyroxine [T4], thyroid stimulating hormone [TSH], and toxicokinetic parameters. RESULTS: Neither 7.5% nor 10% PVP-I affected general in-life measurements. Increased mean thyroid gland absolute weights were noted with 7.5% and 10% PVP-I. Serum levels of PVP, T3, T4, and TSH in the 7.5% and 10% PVP-I treatment group animals were similar to those in vehicle treatment group animals. Mean total serum iodine concentration was 52- and 13-fold higher with 7.5% and 10% PVP-I, respectively, vs respective vehicle treatments. There was no dose-dependent increase in mean maximum serum concentration and area under the curve from 0 to 24 h for PVP, T3, T4, and TSH, nor accumulation of PVP, T3, T4, or TSH in the study. CONCLUSION: Once-daily dermal application of 7.5% and 10% PVP-I for up to 39 weeks was safe and well tolerated in Göttingen Minipigs® and was not associated with skin irritation, thyroid dysfunction, or endocrine disruption. As the anatomy and physiology of the minipig skin closely resembles that of human skin, the findings of this study suggest that 7.5% and 10% PVP-I may be translated into antimicrobial benefits for humans without the risk of endocrine disruption.


Assuntos
Iodo , Dermatopatias , Animais , Suínos , Masculino , Feminino , Humanos , Povidona-Iodo/toxicidade , Porco Miniatura , Toxicocinética , Tri-Iodotironina , Tiroxina , Tireotropina
2.
Pharm Res ; 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39375242

RESUMO

PURPOSE: Volatiles are common in personal care products and dermatological drugs. Determining the impact of evaporation of volatiles on skin permeation is crucial to evaluate and understand their delivery, bioavailability, efficacy and safety. We aim to develop an in-silico model to simulate the impact of evaporation on the dermal absorption of volatiles. METHOD: The evaporation of volatile permeants was modelled using vapour pressure as the main factor. This model considers evaporation as a passive diffusion process driven by the concentration gradient between the air-vehicle interface and the ambient environment. The evaporation model was then integrated with a previously published physiologically based pharmacokinetic (PBPK) model of skin permeation and compared with published in vitro permeation test data from the Cosmetics Europe ADME Task Force. RESULTS: The evaporation-PBPK model shows improved predictions when evaporation is considered. In particular, good agreement has been obtained for the distributions in the evaporative loss, and the overall percutaneous absorption. The model is further compared with published in-silico models from the Cosmetics Europe ADME Task Force where favourable results are achieved. CONCLUSION: The evaporation of volatile permeants under finite dose in vitro permeation test conditions has been successfully predicted using a mechanistic model with the intrinsic volatility parameter vapour pressure. Integrating evaporation in PBPK modelling significantly improved the prediction of dermal delivery.

3.
Pharm Res ; 41(3): 567-576, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38351229

RESUMO

PURPOSE: This study investigates in silico the contribution of the hair follicle to the overall dermal permeability of small molecules, as published experimental work provides inconclusive information on whether the follicular route favours the permeation of hydrophobic or hydrophilic permeants. METHOD: A study is conducted varying physico-chemical parameters of permeants such as lipophilicity, molecular weight and protein binding. The simulated data is compared to published experimental data to discuss how those properties can modulate the contribution of the hair follicle to the overall dermal permeation. RESULTS: The results indicate that the contribution of the follicular route to dermal permeation can range from negligible to notable depending on the combination of lipophilic/hydrophilic properties of the substance filling the follicular route and the permeant. CONCLUSION: Characterisation of the substance filling the follicular route is required for analysing the experimental data of dermal permeation of small molecules, as changes between in vivo and in vitro due to handling of samples and cessation of vital functions can modify the contribution of the follicular route to overall dermal permeation, hence hindering data interpretation.


Assuntos
Folículo Piloso , Absorção Cutânea , Folículo Piloso/metabolismo , Permeabilidade , Interações Hidrofóbicas e Hidrofílicas , Pele/metabolismo
4.
J Appl Toxicol ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39134399

RESUMO

In silico techniques, such as physiologically based pharmacokinetic modeling (PBKP), are recently gaining importance. Computational methods in drug discovery and development and the generic drugs industry enhance research effectiveness by saving time and money and avoiding ethical issues. One key advantage is the ability to conduct toxicology studies without risking harm to living beings. This study aimed to repurpose the multi-phase multi-layer mechanistic dermal absorption (MPML MechDermA) PBPK model for simulation permeation through porcine ear skin under in vitro conditions. The work was divided into four steps: (1) the development of a pig ear skin model based on a previously collected dataset; (2) testing the model's ability to discriminate permeation between pig ear, human abdomen, and human back skin; (3) development of a caffeine permeation model; and (4) testing the caffeine model's performance against in vitro generated data sourced from the scientific literature. Data from 31 manuscripts were used for the development of the pig skin model. Based on these data, values specific to pig skin were found for 22 parameters of the MPML MechDermA model. The model was able to discriminate permeation between pig and human skin. A caffeine model was developed and used to simulate seven experiments identified in the literature. The model's performance was assessed by comparing simulated to observed results. Based on a visual check, all simulations were considered acceptable, whereas three out of seven experiments met the twofold difference criterion. The variability of the experimental data was considered the biggest challenge for reliable model assessment.

5.
J Occup Environ Hyg ; 21(3): 152-161, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38363758

RESUMO

Acrylamide (ACR) is an irritant that can cause damage to the eyes, skin, and nervous and reproductive systems. This study aims to illustrate a case of central nervous system and optic nerve damage from exposure to ACR. In this case, a 49-year-old male material handler was accidentally splashed with ACR solution on both of his upper limbs. Consequently, he was admitted to the hospital with toxic encephalopathy, characterized by cerebellar ataxia and slurred speech. Magnetic resonance imaging scan, a brain computed tomography scan blood sample analyses, optic coherence tomography, electroneuromyogram, and visual evoked potentials examination were performed. After 20 days of receiving symptomatic support treatment, the patient continued to experience disturbances in consciousness. Then, he developed vision loss, memory disorders, and symptoms of peripheral neuropathy such as skin peeling, extremity weakness, and absent tendon reflexes. This case report underscores the severe consequences of acute dermal exposure to high concentrations of ACR, resulting in toxic encephalopathy, visual impairment, and memory disorders, which will contribute to a broader understanding of ACR toxicity.


Assuntos
Acrilamida , Síndromes Neurotóxicas , Masculino , Humanos , Pessoa de Meia-Idade , Acrilamida/toxicidade , Potenciais Evocados Visuais , Síndromes Neurotóxicas/etiologia , Transtornos da Visão/induzido quimicamente , Transtornos da Memória/induzido quimicamente
6.
J Environ Sci Health B ; 59(9): 551-561, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39138893

RESUMO

Per and polyfluoroalkyl substances (PFAS) are toxicologically concerning because of their potential to bioaccumulate and their persistence in the environment and the human body. We determined PFAS levels in cosmetic and personal care products and assessed their health risks. We investigated the trends in concentrations and types of PFAS contaminants in cosmetic and personal care products before and after perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) were added to the list of persistent organic pollutants. The total PFAS concentration ranged from 1.98 to 706.75 ng g-1. The hazard quotients (HQs) for PFOA, PFOS and perfluorobutanesulfonic acid (PFBS) were lower than 1, indicating no appreciable risk to consumers. Assuming the simultaneous use of all product types and the worst-case scenario for calculations, perfluoroalkyl carboxylic acids and perfluoroalkane sulfonic acids (PFSAs) also had hazard indices lower than 1. We found that adverse effects are unlikely to occur when each type of cosmetic is used separately, or even when all product types are used together. Nevertheless, the persistence and bioaccumulation characteristics of additional PFAS present in cosmetics continue to be a cause for concern. Further research is necessary to investigate the long-term impacts of using such cosmetics and the associated risks to human health.


Assuntos
Ácidos Alcanossulfônicos , Cosméticos , Fluorocarbonos , Cosméticos/análise , Fluorocarbonos/análise , Fluorocarbonos/toxicidade , Medição de Risco , Humanos , Ácidos Alcanossulfônicos/análise , Caprilatos/análise , Caprilatos/toxicidade , Poluentes Ambientais/análise , Monitoramento Ambiental , Exposição Ambiental
7.
Toxicol Appl Pharmacol ; 459: 116357, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36572228

RESUMO

Bisphenol A (BPA) is one of the best studied industrial chemicals in terms of exposure, toxicity, and toxicokinetics. This renders it an ideal candidate to exploit the recent advancements in physiologically based pharmacokinetic (PBPK) modelling to support risk assessment of BPA specifically, and of other consumer-relevant hazardous chemicals in general. Using the exposure from thermal paper as a case scenario, this study employed the multi-phase multi-layer mechanistic dermal absorption (MPML MechDermA) model available in the Simcyp® Simulator to simulate the dermal toxicokinetics of BPA at local and systemic levels. Sensitivity analysis helped to identify physicochemical and physiological factors influencing the systemic exposure to BPA. The iterative modelling process was as follows: (i) development of compound files for BPA and its conjugates, (ii) setting-up of a PBPK model for intravenous administration, (iii) extension for oral administration, and (iv) extension for exposure via skin (i.e., hand) contact. A toxicokinetic study involving hand contact to BPA-containing paper was used for model refinement. Cumulative urinary excretion of total BPA had to be employed for dose reconstruction. PBPK model performance was verified using the observed serum BPA concentrations. The predicted distribution across the skin compartments revealed a depot of BPA in the stratum corneum (SC). These findings shed light on the role of the SC to act as temporary reservoir for lipophilic chemicals prior to systemic absorption, which inter alia is relevant for the interpretation of human biomonitoring data and for establishing the relationship between external and internal measures of exposure.


Assuntos
Absorção Cutânea , Pele , Humanos , Cinética , Pele/metabolismo , Compostos Benzidrílicos/toxicidade , Compostos Benzidrílicos/farmacocinética
8.
Environ Sci Technol ; 57(12): 4951-4958, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36917694

RESUMO

Exposures to per- and polyfluoroalkyl substances (PFAS) are of increasing concern. Assessments typically focus only on ingestion and inhalation exposure due to a lack of generally accepted approaches for estimating dermal absorption. Prior work indicates limited dermal absorption of ionic PFAS, but absorption of neutral PFAS has not been examined from the liquid vehicle or from vapor. Partitioning of semivolatile organic compounds from the gas phase to the skin surface (i.e., stratum corneum) is well known, but the potential for partitioning of neutral PFAS from the gas phase to the stratum corneum has yet to be estimated. The SPARC-estimated physicochemical properties were used to calculate transdermal permeability coefficients (kp_g) and dermal-to-inhalation (D/I) exposure ratios for two groups of neutral PFAS, including those on a U.S. Environmental Protection Agency PFAS list. 11 neutral PFAS gave calculated D/I ratios >5, indicating that direct transdermal absorption may be an important exposure pathway compared to inhalation. Data on consumer products or indoor air is needed for the 11 neutral PFAS, followed by possible biomonitoring to experimentally verify dermal absorption from air. Additional PFAS should be estimated by the protocol used here as they are identified in commercial products.


Assuntos
Poluição do Ar em Ambientes Fechados , Fluorocarbonos , Absorção Cutânea , Compostos Orgânicos , Exposição por Inalação/análise , Fluorocarbonos/análise
9.
J Toxicol Environ Health A ; 86(13): 421-433, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37203870

RESUMO

Tetrachlorvinphos (TCVP) is the pesticidal active ingredient in some collars for dogs and cats. The objective of this study was to provide a refined estimate of dermal penetration of TCVP in humans using in silico predictions as well as in vitro and in vivo data. The in vivo dermal absorption of TCVP was previously studied in the rat and shown to be saturable, ranging from 21.7% (10 µg/cm2) down to 3% (1000 µg/cm2) Subsequent in silico predictions were conducted for rats and humans to provide initial evaluations of species and dose-dependent differences in dermal absorption. A definitive comparison of TCVP systemic exposure in rat and human following dermal application was then conducted via a standard in vitro assay. TCVP dose levels of 10, 100, or 1000 µg/cm2 were applied to excised rat and human skin mounted in flow-through diffusion cells. The vehicle was 1% hydroxypropylmethylcellulose (HPMC) in water. An additional 5 µg/cm2 dose was applied to excised human skin only. The in vitro dermal absorption of TCVP was also assessed from artificial sebum at dose levels of 5, 10, or 100 µg/cm2 applied to human skin only. Utilizing the so-called triple pack approach with in vitro and in vivo rat data and in vitro human data, dermal absorption for TCVP was calculated for humans. In silico modeling indicated absorption of TCVP through human skin might be 3- to 4- fold lower than rat skin at all application levels, with a maximum dermal absorption of 9.6% at the lowest exposure of 10 µg/cm2, down to 0.1% at 1000 µg/cm2. Similar species differences were also found in the definitive in vitro absorption assays. Modeling overestimated TCVP human dermal absorption (9.6%) as compared to excised human skin results (1.7%) for the HPMC vehicle at the lowest exposure (10 µg/cm2), with better agreement at the higher exposures. Conversely, modeling accurately predicted rat dermal absorption (27.9%) as compared to in vivo rat results (21.7%) at the lowest exposure in HPMC, with diminished agreement at the higher exposures. As a first approximation, in silico estimates of dermal absorption are useful; however, these tend to be more variable than in vitro or in vivo measurements. TCVP dermal penetration measured in vitro was lower in 1% HPMC vehicle as compared to artificial sebum. For the 1% HPMC vehicle, in vitro rat dermal absorption was similar to data obtained for in vivo rats, giving confidence in the triple pack approach. In consideration of the triple pack approach, estimated human dermal absorption from 1% HPMC was ≤2%. Based upon excised human skin determinations directly, estimated human dermal absorption of TCVP from artificial sebum was ≤7%.


Assuntos
Doenças do Gato , Doenças do Cão , Humanos , Ratos , Animais , Cães , Gatos , Tetraclorvinfos/metabolismo , Doenças do Gato/metabolismo , Doenças do Cão/metabolismo , Pele/metabolismo , Absorção Cutânea
10.
Regul Toxicol Pharmacol ; 142: 105432, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37302560

RESUMO

While there are some regulatory assessment criteria available on how to generally evaluate dermal absorption (DA) studies for risk assessment purposes, practical guidance and examples are lacking. The current manuscript highlights the challenges in interpretating data from in vitro assays and proposes holistic data-based assessment strategies from an industry perspective. Inflexible decision criteria may be inadequate for real data and may lead to irrelevant DA estimates. We recommend the use of mean values for reasonably conservative DA estimates from in vitro studies. In cases where additional conservatism is needed, e.g., due to non-robust data and acute exposure scenarios, the upper 95% confidence interval of the mean may be appropriate. It is critical to review the data for potential outliers and we provide some example cases and strategies to identify aberrant responses. Some regional regulatory authorities require the evaluation of stratum corneum (SC) residue, but here, as a very simple pro-rata approach, we propose to review whether the predicted post 24-h absorption flux exceeds the predicted elimination flux by desquamation because otherwise it is not possible for the SC residue to contribute to systemic dose. Overall, the adjustment of DA estimates due to mass balance (normalization) is not recommended.


Assuntos
Praguicidas , Pele , Pele/metabolismo , Absorção Cutânea , Praguicidas/metabolismo , Epiderme , Indústrias , Medição de Risco
11.
J Occup Environ Hyg ; 20(3-4): 143-158, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36716165

RESUMO

The accuracy of exposure judgments, particularly for scenarios where only qualitative information is available or a systematic approach is not used, has been evaluated and shown to have a relatively low level of accuracy. This is particularly true for dermal exposures, where less information is generally available compared to inhalation exposures. Relatively few quantitative validation efforts have been performed for scenarios where dermal exposures are of interest. In this study, a series of dermal exposure judgments were collected from 90 volunteer U.S. occupational health practitioners in a workshop format to assess the accuracy of their judgments for three specific scenarios. Accuracy was defined as the ability of the participants to identify the correct reference exposure category, as defined by the quantitative exposure banding categories utilized by the American Industrial Hygiene Association (AIHA®). The participants received progressively additional information and training regarding dermal exposure assessments and scenario-specific information during the workshop, and the relative accuracy of their category judgments over time was compared. The results of the study indicated that despite substantial education and training in exposure assessment generally, the practitioners had very little experience in performing dermal exposure assessments and a low level of comfort in performing these assessments. Further, contrary to studies of practitioners performing inhalation exposure assessments demonstrating a trend toward underestimating exposures, participants in this study consistently overestimated the potential for dermal exposure without quantitative data specific to the scenario of interest. Finally, it was found that participants were able to identify the reference or "true" category of dermal exposure acceptability when provided with relevant, scenario-specific dermal and/or surface-loading data for use in the assessment process. These results support the need for additional training and education of practitioners in performing dermal exposure assessments. A closer analysis of default loading values used in dermal exposure assessments to evaluate their accuracy relative to real-world or measured dermal loading values, along with consistent improvements in current dermal models, is also needed.


Assuntos
Exposição Ocupacional , Saúde Ocupacional , Humanos , Exposição Ocupacional/análise , Julgamento , Medição de Risco/métodos , Saúde Ocupacional/educação , Exposição por Inalação
12.
Environ Geochem Health ; 45(11): 7741-7757, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37428425

RESUMO

Excessive nitrate intake via ingestion pathway and dermal absorption exposures has adverse health impacts on human health. This study evaluated groundwater (GW) nitrate concentrations and health risks which focused on ingestion and dermal exposures to residents in Bachok District, Kelantan, Malaysia. Three hundred (300) samples of private wells were collected and it is found that the nitrate concentrations ranging between 0.11 and 64.01 mg/L NO3-N with a mean value of 10.45 ± 12.67 mg/L NO3-N. The possible health hazards of nitrate by ingestion and dermal contact were assessed using USEPA human health risk assessment model for adult males and females. It is observed that the mean Hazard Quotient (HQ) values of adult males and females were 0.305 ± 0.364 and 0.261 ± 0.330, respectively. About 7.3% (n = 10) and 4.9% (n = 8) of adult males and females had HQ values more than 1, respectively. It was also observed that the mean of HQderm was lesser than HQoral for males and females. The spatial distribution of HQ by interpolation method showed high nitrate concentrations (> 10 mg/L NO3-N) were distributed from the centre to the southern part of the study location, which identified as an agricultural area, indicating the used of nitrogenous fertilizers as the main source of GW nitrate contamination in this area. The findings of this study are valuable for establishing private well water protection measures to stop further deterioration of GW quality caused by nitrate.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Masculino , Adulto , Feminino , Humanos , Nitratos/análise , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Compostos Orgânicos , Medição de Risco/métodos
13.
Environ Monit Assess ; 195(11): 1295, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37821680

RESUMO

Knowledge of dietary intakes of essential elements in groundwater is important for proper assessment of the actual contribution of drinking water to daily nutrient requirements. This study assessed the daily intake of nutritional elements in drinking groundwater of Lagos and Ogun States of Nigeria. One hundred and seventy (170) water samples were collected and analyzed for thirteen (13) nutritional elements (K, Mg, Ca, Co, Fe, Cu, Zn, Mo, Se, Na, Mn, Cr, and I) by Inductively Coupled Plasma-Mass Spectrometry (ICP/MS). Chronic daily intake CDI of the nutritional elements was higher for children and infants than adults in all cases. Percentages of tolerable daily intake reference value (TIRV) obtained for Lagos State groundwater were Mg 0.425%, Ca 0.309%, Fe 14.0%, Cu 1.84%, Zn 6.25%, Mo 0.057%, and Mn 1.08%; for Ogun State groundwater, % TIRV were Mg 1.99%, Ca 0.586%, Fe 81.1%, Cu 2.12%, Zn 9.21%, Mo 1.16%, and Mn 0.023%. The order of dermal absorption by an adult in Lagos when the water is used for bathing daily was Cr > Mn > Fe > Zn > Cu while the order in Ogun was Fe > Mn > Zn > Cu > Cr. The research concluded that groundwater alone cannot provide enough essential elements for human dietary needs in the study area.


Assuntos
Água Potável , Água Subterrânea , Oligoelementos , Criança , Lactente , Adulto , Humanos , Monitoramento Ambiental/métodos , Nigéria , Metais/análise , Água Subterrânea/química , Água Potável/análise , Necessidades Nutricionais , Oligoelementos/análise
14.
Wiad Lek ; 76(4): 817-823, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37226621

RESUMO

OBJECTIVE: The aim: Quantitative characterization of parameters of penetration of pesticides through the skin and assessment of the risk of their dermal exposure to workers using the basic provisions of diffusion theory and calculation models. PATIENTS AND METHODS: Materials and methods: The penetration coefficient was calculated using the Potts's and Guy's equation: logKp,m = -2,8 - 6,0×10-3MW + 0,74logKo/w (R2 = 0.67). Determination of the absorbed dose was carried out using the maximum flow of the substance per unit area and the area of contact of the pesticide with the skin. Calculations were performed using the Microsoft Excel 2010 computer program package, PubChem information databases, EU Pesticides Database. RESULTS: Results: It was established that the pyrethroid insecticide bifenthrin and triazole fungicides (prothioconazole, propiconazole, and tebuconazole) penetrate the skin the fastest among the studied substances. The highest value of the absorbed dose is observed in the case of bifenthrin, which creates dangerous conditions during production operations with pesticide formulations based on it and conditions the adoption of necessary management decisions. CONCLUSION: Conclusions: The calculation model of Potts and Guy (1992) is sufficiently informative and reliable to determine the coefficient of penetration of pesticides from aqueous solutions in the phase of the steady process of diffusion and allows determining the doses absorbed through the skin and assessing the risk of dermal exposure to workers.


Assuntos
Fungicidas Industriais , Praguicidas , Absorção Cutânea , Humanos , Exposição Ocupacional
15.
Mol Pharm ; 19(9): 3139-3152, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35969125

RESUMO

Physiologically based pharmacokinetic (PBPK) modeling has increasingly been employed in dermal drug development and regulatory assessment, providing a framework to integrate relevant information including drug and drug product attributes, skin physiology parameters, and population variability. The current study aimed to develop a stepwise modeling workflow with knowledge gained from modeling in vitro skin permeation testing (IVPT) to describe in vivo exposure of metronidazole locally in the stratum corneum following topical application of complex semisolid drug products. The initial PBPK model of metronidazole in vitro skin permeation was developed using infinite and finite dose aqueous metronidazole solution. Parameters such as stratum corneum lipid-water partition coefficient (Ksclip/water) and stratum corneum lipid diffusion coefficient (Dsclip) of metronidazole were optimized using IVPT data from simple aqueous solutions (infinite) and MetroGel (10 mg/cm2 dose application), respectively. The optimized model, when parameterized with physical and structural characteristics of the drug products, was able to accurately predict the mean cumulative amount permeated (cm2/h) and flux (µg/cm2/h) profiles of metronidazole following application of different doses of MetroGel and MetroCream. Thus, the model was able to capture the impact of differences in drug product microstructure and metamorphosis of the dosage form on in vitro metronidazole permeation. The PBPK model informed by IVPT study data was able to predict the metronidazole amount in the stratum corneum as reported in clinical studies. In summary, the proposed model provides an enhanced understanding of the potential impact of drug product attributes in influencing in vitro skin permeation of metronidazole. Key kinetic parameters derived from modeling the metronidazole IVPT data improved the predictions of the developed PBPK model of in vivo local metronidazole concentrations in the stratum corneum. Overall, this work improves our confidence in the proposed workflow that accounts for drug product attributes and utilizes IVPT data toward improving predictions from advanced modeling and simulation tools.


Assuntos
Metronidazol , Pele , Administração Cutânea , Lipídeos , Água
16.
Environ Sci Technol ; 56(23): 16975-16984, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36419387

RESUMO

Humans are frequently exposed to poly- and perfluoroalkyl substances (PFASs) via direct skin contact with personal care and consumer products containing them. Here, we used a rat model to estimate the dermal penetration efficiency of 15 representative PFASs. After 144 h post-dosing, 4.1-18.0 and 5.3-15.1% of the applied PFASs in the low (L) and high (H) groups, respectively, were absorbed into the rats. PFAS absorption and permeation were parabolically associated with the perfluorinated carbon chain length (CF), peaking for perfluoroheptanoic acid (PFHpA). The lipid-rich stratum corneum of the skin barrier substantially suppressed the penetration of less hydrophobic short-chain PFASs, whereas the water-rich viable epidermis and dermis served as obstacles to hydrophobic long-chain PFAS permeation. However, the renal clearance (CLrenal) of the target PFAS decreased with increasing CF, suggesting that urinary excretion is crucial to eliminate less hydrophobic short-chain PFASs. Notably, the peak times of PFASs in the systemic circulation of rats (8-72 h) were remarkably longer than those after oral administration (1-24 h). These results suggest that dermal penetration can be long-lasting and contribute considerably to the body burden of PFASs, especially for those with moderate hydrophobicity due to their favorable skin permeation and unfavorable urinary excretion.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Poluentes Químicos da Água , Humanos , Ratos , Animais , Fluorocarbonos/análise , Poluentes Químicos da Água/análise , Pele , Água
17.
Environ Res ; 207: 112234, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-34678257

RESUMO

The contamination profile and the human health risk assessment of various heavy metals (Cd, Cr, Mn, Ni and Pb) in vegetable oils, palm oils, butter and shea butter purchased from the Nigerian market were evaluated. Univariate and multivariate analyses including the principal component analysis (PCA), hierarchical cluster analysis (HCA) and heat map visualization were used to evaluate correlation, similarity and source of metals. Dietary intake and dermal absorption through the application in skin were also assessed. The heavy metals 5th and 95th percentile interval range (in mg/kg) were 0.003-0.208, 0.003-0.392, 0.003-1.344, 0.003-0.369 and 0.006-0.531 for Cd, Cr, Mn, Ni and Pb, respectively. Concentrations of Cr and Mn were significantly different across sample categories, being the levels of Mn and Ni positively correlated in both oil and butter samples. The result of PCA, HCA and heat map revealed the profile of heavy metals in oils was different from that of butters, with Pb mainly associated to oils, and Cd, Cr, Mn and Ni to butters. In some samples, the international maximum levels for Cd, Ni and Pb in edible oils were exceeded. Cadmium and Pb dietary intake through Nigerian oils and butters should not be considered negligible for human health protection.


Assuntos
Monitoramento Ambiental , Metais Pesados , Exposição Dietética/análise , Humanos , Metais Pesados/análise , Níger , Nigéria , Medição de Risco
18.
Environ Res ; 210: 112983, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35192803

RESUMO

A novel analytical method for the monitoring of four newly identified plasticizers, namely di-propylene glycol dibenzoate (DiPGDB), tri-n-butyl trimellitate (TBTM), isooctyl 2-phenoxyethyl terephthalate (IOPhET) and bis 3,5,5-trimethylhexyl phosphate (TMHPh), in handwipes based on pulverization was developed and in-house validated. In total, 164 handwipe samples (paired with house dust and human urine) were collected during winter (n = 82) and summer (n = 82) 2019 from adults and toddlers living in Flanders, Belgium. Method LOQs ranged from 1 to 200 ng/g. The ranges of Σplasticizers were 70-5400 ng/g for winter and 70-3720 ng/g for summer. The detection frequencies were 39% for DiPGDB, 27% for TBTM and <5% for IOPhET and TMHPh in winter samples and 33% for DiPGDB, 21% for TBTM and <10% for IOPhET and TMHPh in summer ones. The dominant compound in handwipes was DiPGDB, with mean contributions of 74% and 83% for winter and summer, followed by TBTM (24% and 9.2%), TMHPh (1.8% and 8.1%) and IOPhET (<1% and <1%). Σplasticizers concentrations were positively correlated in summer with the use of sanitizer (r = 0.375, p < 0.05) and negatively correlated in winter with the use of personal care products (r = -0.349, p < 0.05). DiPGDB was found positively correlated with the age of the participants (r = 0.363, p < 0.05) and the time spent indoors (r = 0.359, p < 0.05), indicating indoor environment as a potential source. Levels of TBTM in handwipes were positively correlated with dust samples collected from the same households (r = 0.597, p < 0.05), and those detected in toddler handwipes were significantly higher compared to adults (p < 0.05). Human daily exposure via dermal absorption was evaluated using the dermal derived no effects level values (DNEL), available in the database of the European Chemicals Agency (ECHA) and estimated using the theoretical bio-accessible fractions per compound. Toddler exposure to TBTM was significantly higher compared to adults (T-test, p < 0.05). No risk for adverse human health effects was derived from the comparison with DNELs for all compounds.


Assuntos
Poluição do Ar em Ambientes Fechados , Plastificantes , Adulto , Poluição do Ar em Ambientes Fechados/análise , Bélgica , Poeira/análise , Exposição Ambiental , Humanos , Organofosfatos , Plastificantes/análise
19.
Arch Toxicol ; 96(9): 2429-2445, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35704048

RESUMO

Dermal absorption values are used to translate external dermal exposure into potential systemic exposure for non-dietary risk assessment of pesticides. While the Environmental Protection Agency of the United States of America (US EPA) derives a common dermal absorption factor for active substances covering all related products, the European Food Safety Authority (EFSA) requests specific product-based estimates for individual concentrations covering the intended use rates. The latter poses challenges, because it disconnects exposure dose from applied dose in absorption studies, which may not be suitable in scenarios where concentration is not relevant. We analyzed the EFSA dermal absorption database, collected 33 human in vitro studies from CropLife Europe (CLE) companies, where ≥3 in-use dilution concentrations were tested, and 15 dermal absorption triple pack datasets. This shows that absolute dermal absorption correlates with absolute applied dose on a decadic logarithm-scale, which is concordant with the toxicological axiom that risk is driven by exposure dose. This method is radically different from the current European approach focused on concentrations and offers new insights into the relationship of internal and external exposure doses when utilizing data from in vitro studies. A single average dermal absorption value can be simply derived from studies with multiple tested concentrations, by calculating the y-intercept of a linear model on a decadic logarithm scale while assuming a slope of 1. This simplifies risk assessment and frees resources to explore exposure refinements. It also serves as a basis to harmonize dermal absorption estimation globally for use in exposure-driven risk assessments.


Assuntos
Praguicidas , Inocuidade dos Alimentos , Humanos , Praguicidas/toxicidade , Medição de Risco , Absorção Cutânea , Estados Unidos , United States Environmental Protection Agency
20.
Regul Toxicol Pharmacol ; 132: 105184, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35577015

RESUMO

The dermal absorption potential of 14C-Caffeine applied as a 4 mg/mL concentration (10 µL/cm2 finite dose) was investigated in six laboratories under Good Laboratory Practice conditions using an OECD TG 428-compliant in vitro assay with flow-through cells and split-thickness human skin. Potential sources of variation were reduced by a standardized protocol, test item and skin source. Particularly, skin samples from same donors were distributed over two repeats and between labs in a non-random, stratified design. Very similar recovery was achieved in the various assay compartments between laboratories, repeats and donors, demonstrating that the assay can be robustly and reliably performed. The absorption in one laboratory was 5-fold higher than in the others. This did not clearly correlate with skin integrity parameters but might be associated with an accidental COVID-19 pandemic-related interruption in sample shipment. It is possible that other factors may affect dermal absorption variation not routinely assessed or considered in the current method. The mean receptor fluid recovery, potential absorption (recovery in receptor fluid and skin except tape strips 1 and 2) and mass balance of caffeine was 6.99%, 7.14% and 99.13%, respectively, across all and 3.87%, 3.96% and 99.00% in the subset of five laboratories.


Assuntos
COVID-19 , Absorção Cutânea , Cafeína , Humanos , Organização para a Cooperação e Desenvolvimento Econômico , Pandemias , Pele/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa