Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Brain ; 146(6): 2259-2267, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36625030

RESUMO

The CNS houses naturally occurring pathways that project from the brain to modulate spinal neuronal activity. The noradrenergic locus coeruleus (the A6 nucleus) originates such a descending control whose influence on pain modulation encompasses an interaction with a spinally projecting non-cerulean noradrenergic cell group. Hypothesizing the origin of an endogenous pain inhibitory pathway, our aim was to identify this cell group. A5 and A7 noradrenergic nuclei also spinally project. We probed their activity using an array of optogenetic manipulation techniques during in vivo electrophysiological experimentation. Interestingly, noxious stimulus evoked spinal neuronal firing was decreased upon opto-activation of A5 neurons (two-way ANOVA with Tukey post hoc, P < 0.0001). Hypothesizing that this may reflect activity in the noradrenergic diffuse noxious inhibitory control circuit, itself activated upon application of a conditioning stimulus, we opto-inhibited A5 neurons with concurrent conditioning stimulus application. Surprisingly, no spinal neuronal inhibition was observed; activity in the diffuse noxious inhibitory control circuit was abolished (two-way ANOVA, P < 0.0001). We propose that the A5 nucleus is a critical relay nucleus for mediation of diffuse noxious inhibitory controls. Given the plasticity of diffuse noxious inhibitory controls in disease, and its back and forward clinical translation, our data reveal a potential therapeutic target.


Assuntos
Controle Inibitório Nociceptivo Difuso , Humanos , Controle Inibitório Nociceptivo Difuso/fisiologia , Dor/metabolismo , Neurônios/metabolismo , Locus Cerúleo/metabolismo , Encéfalo/metabolismo , Norepinefrina/metabolismo , Medula Espinal/metabolismo
2.
Br J Anaesth ; 130(1): 83-93, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36396483

RESUMO

BACKGROUND: Chemotherapy-induced peripheral neuropathy (CIPN) is a debilitating condition impacting 30% of cancer survivors. This study is the first to explore whether a brain-based vulnerability to chronic sensory CIPN exists. METHODS: This prospective, multicentre cohort study recruited from three sites across Scotland. Brain functional MRI (fMRI) scans (3 Tesla) were carried out on chemotherapy naïve patients at a single fMRI centre in Edinburgh, Scotland. Nociceptive stimuli (with a 256 mN monofilament) were administered during the fMRI. Development of chronic sensory/painful CIPN (CIPN+) was determined based upon European Organization for Research and Treatment of Cancer Quality of Life Questionnaire Chemotherapy-Induced Peripheral Neuropathy 20 changes conducted 9 months after chemotherapy, and imaging data analysed using standard software. RESULTS: Of 30 patients recruited (two lung, nine gynaecological, and 19 colorectal malignancies), data from 20 patients at 9 months after chemotherapy was available for analysis. Twelve were classified as CIPN+ (mean age, 63.2[9.6] yr, 9.6; six female), eight as CIPN- (mean age 62.9 [SD 5.5] yr, four female). In response to punctate stimulation, group contrast analysis showed that CIPN+ compared with CIPN- had robust activity in sensory, motor, attentional, and affective brain regions. An a priori chosen region-of-interest analysis focusing on the periaqueductal grey, an area hypothesised as relevant for developing CIPN+, showed significantly increased responses in CIPN- compared with CIPN+ patients. No difference in subcortical volumes between CIPN+ and CIPN- patients was detected. CONCLUSIONS: Before administration of any chemotherapy or appearance of CIPN symptoms, we observed altered patterns of brain activity in response to nociceptive stimulation in patients who later developed chronic sensory CIPN. This suggests the possibility of a pre-existing vulnerability to developing CIPN centred on brainstem regions of the descending pain modulatory system.


Assuntos
Antineoplásicos , Doenças do Sistema Nervoso Periférico , Humanos , Feminino , Pessoa de Meia-Idade , Antineoplásicos/efeitos adversos , Estudos de Coortes , Estudos Prospectivos , Qualidade de Vida , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/diagnóstico por imagem , Dor/tratamento farmacológico , Neuroimagem , Encéfalo/diagnóstico por imagem
3.
Pain Med ; 21(10): 2271-2279, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32167540

RESUMO

OBJECTIVES: We investigated sex differences and the influence of brain-derived neurotrophic factor (BDNF) in the descending pain modulatory system (DPMS), as measured by change on the numerical pain scale (NPS; 0-10) during conditioned pain modulation (CPM task; primary outcome) and by function of the corticospinal motor pathway and heat pain thresholds (HPTs; secondary outcomes). METHODS: This cross-sectional study included healthy volunteers ranging in age from 18 to 45 years (32 male and 24 female). Assessment included serum BDNF, HPT, change on the NPS (0-10) during the CPM task, and motor-evoked potential (MEP) using transcranial magnetic stimulation (TMS). RESULTS: The MEP (Mv) amplitude was larger in male participants compared with female participants (mean [SE] = 1.55 [0.34] vs mean [SE] = 1.27 [0.27], respectively, P = 0.001). The mean NPS (0-10) during CPM task changed more substantially for female compared with male participants (mean [SE] = -3.25 [2.01] vs mean [SE] = -2.29 [1.34], respectively, P = 0.040). In addition, a higher serum BDNF (adjusted index for age) was associated with a larger decrease of the NPS during CPM task (P = 0.003), although further regression analyses by sex showed that this was only significant for females (P = 0.010). CONCLUSIONS: Significant sex differences were identified in DPMS function and corticospinal motor pathway integrity. Nevertheless, BDNF was associated with the function of the DPMS in female but not male participants, indicating that sex and neuroplasticity state are crucial factors for pain perception in healthy subjects.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Dor , Adolescente , Adulto , Estudos Transversais , Feminino , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Limiar da Dor , Estimulação Magnética Transcraniana , Adulto Jovem
4.
Adv Exp Med Biol ; 1099: 141-146, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30306521

RESUMO

One feels a disproportionately large decrease of pain sensation on a slight decrease of thermal pain stimulus. Such phenomenon is termed offset analgesia and considered mediated by endogenous analgesic mechanisms. Offset analgesia was found attenuated in patients with neuropathic pain. We further found that such attenuation occurred in a more heterogeneous population of patients with chronic pain. By functional magnetic resonance imaging, we also found negative blood oxygenation level-dependent signals at those areas concerned with descending pain modulatory and reward systems during offset analgesia in the same cohort of patients. We propose that dysfunction of those systems, as revealed by attenuation of offset analgesia, might well be part of neural mechanisms of pain chronification.


Assuntos
Analgesia , Dor Crônica/fisiopatologia , Sistema Nervoso/fisiopatologia , Humanos , Imageamento por Ressonância Magnética , Medição da Dor
5.
Adv Exp Med Biol ; 1099: 179-199, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30306525

RESUMO

Primary dysmenorrhea (PDM), cyclic menstrual pain in the absence of pelvic anomalies, is one of the most common gynecological disorders in reproductive females. Classified as chronic pelvic pain syndrome, PDM encompasses recurrent spontaneous painful ("on") and pain-free ("off") states and is thus a good clinical model to study state- and trait-related changes of pain in the brain. In this chapter, we summarize state-of-the-art neuroimaging studies of primary dysmenorrhea from phenotype and endophenotype to genotype facets. Structural and functional brain alterations associated with primary dysmenorrhea are discussed.


Assuntos
Encéfalo/diagnóstico por imagem , Dismenorreia/diagnóstico por imagem , Neuroimagem , Mapeamento Encefálico , Feminino , Humanos , Medição da Dor
6.
Cannabis Cannabinoid Res ; 7(3): 274-278, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35612493

RESUMO

The brain mechanism of inflammatory pain is an understudied area of research, particularly concerning the descending pain modulatory system. The G protein-coupled receptor 55 (GPR55) is a lysophosphatidylinositol-sensitive receptor that has also been involved in cannabinoid signaling. It is widely expressed throughout the central nervous system, including the periaqueductal gray (PAG), a brainstem area and key element of the descending pain modulatory system. In this study, we used behavioral, stereotaxic injections, pharmacological tools, and two inflammatory pain models (formalin and carrageenan) to determine if GPR55 in the PAG plays a role in the pain associated with inflammation in rats. It was found that the blockade of GPR55 action in PAG can drive the descending pain modulatory system to mitigate inflammatory pain. These data show that GPR55 plays a role in the descending pain modulatory system in inflammatory pain.


Assuntos
Dor , Substância Cinzenta Periaquedutal , Animais , Dor/tratamento farmacológico , Medição da Dor , Substância Cinzenta Periaquedutal/metabolismo , Ratos , Receptores de Canabinoides/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
7.
J Orthop Res ; 38(2): 422-430, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31538672

RESUMO

We investigated the efficacy of duloxetine on hyperalgesia, histopathological and radiographic findings, pain-related sensory innervation of dorsal-root ganglia (DRG), and spinal changes in a rat model of induced hip osteoarthritis (OA). The right hip joints of male Sprague-Dawley rats (n = 6 rats/group) in the Sham group were injected with 25 µl of sterile saline and 25 µl of sterile saline with 2 mg of monosodium iodoacetate (MIA) were injected to the MIA + Vehicle and MIA + Duloxetine groups. We injected duloxetine 20 mg/kg intraperitoneally in the MIA + Duloxetine group 28 days after injection, whereas rats in the MIA + Vehicle group were injected with 0.5 ml of 20% dimethyl sulfoxide. We assessed hyperalgesia, histopathological changes, immunoreactive (-ir) neurons for calcitonin gene-related peptide and activating transcription factor 3 in DRG, and immunoreactive neurons for ionized-calcium-binding adaptor molecule 1 (Iba1) in the dorsal horn of the spinal cord. MIA administration into the hip joint let to mechanical hyperalgesia of the ipsilateral hind paw (p < 0.05). A single injection of duloxetine significantly attenuated it in induced hip OA (p < 0.05) and suppressed the number of Iba1-ir microglia of the ipsilateral dorsal horn (p < 0.05). These results suggest that a single injection of duloxetine suppressed mechanical hyperalgesia and may influence the expression of Iba1 in the microglia of the ipsilateral dorsal horn in the MIA-induced hip OA. This finding implies the inhibitory effects of duloxetine against neuropathic pain, which may lead to a change of microglial activities. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:422-430, 2020.


Assuntos
Analgésicos/uso terapêutico , Cloridrato de Duloxetina/uso terapêutico , Articulação do Quadril/efeitos dos fármacos , Osteoartrite do Quadril/tratamento farmacológico , Analgésicos/farmacologia , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Cloridrato de Duloxetina/farmacologia , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Articulação do Quadril/diagnóstico por imagem , Articulação do Quadril/patologia , Ácido Iodoacético , Masculino , Osteoartrite do Quadril/induzido quimicamente , Osteoartrite do Quadril/diagnóstico por imagem , Osteoartrite do Quadril/patologia , Ratos Sprague-Dawley , Corno Dorsal da Medula Espinal/efeitos dos fármacos , Corno Dorsal da Medula Espinal/metabolismo
8.
Curr Neuropharmacol ; 18(1): 34-50, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31210112

RESUMO

The dorsal striatum, apart from controlling voluntary movement, displays a recently demonstrated pain inhibition. It is connected to the descending pain modulatory system and in particular to the rostral ventromedial medulla through the medullary dorsal reticular nucleus. Diseases of the basal ganglia, such as Parkinson's disease, in addition to being characterized by motor disorders, are associated with pain and hyperactivation of the excitatory transmission. A way to counteract glutamatergic hyperactivation is through the activation of group III metabotropic glutamate receptors (mGluRs), which are located on presynaptic terminals inhibiting neurotransmitter release. So far the mGluRs of group III have been the least investigated, owing to a lack of selective tools. More recently, selective ligands for each mGluR of group III, in particular positive and negative allosteric modulators, have been developed and the role of each subtype is starting to emerge. The neuroprotective potential of group III mGluRs in pathological conditions, such as those characterized by elevate glutamate, has been recently shown. In the dorsal striatum, mGluR7 and mGluR8 are located at glutamatergic corticostriatal terminals and their stimulation inhibits pain in pathological conditions such as neuropathic pain. The two receptors in the dorsal striatum have instead a different role in pain control in normal conditions. This review will discuss recent results focusing on the contribution of mGluR7 and mGluR8 in the dorsal striatal control of pain. The role of mGluR4, whose antiparkinsonian activity is widely reported, will also be addressed.


Assuntos
Neostriado/fisiopatologia , Dor/fisiopatologia , Receptores de Glutamato Metabotrópico/fisiologia , Animais , Neostriado/efeitos dos fármacos , Dor/tratamento farmacológico
9.
Acupunct Med ; 37(1): 47-54, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30843418

RESUMO

BACKGROUND: Acupuncture has been recommended as an alternative therapy for migraine. Emerging evidence suggests that the 5-HT7 receptor (5-HT7R) plays a significant facilitatory role in descending modulation in migraine pathophysiology, and that activation of 5-HT7R in the descending pathway is involved in migraine central sensitisation. OBJECTIVE: To investigate the ability of electroacupuncture (EA) to ameliorate central sensitisation via modulation of 5-HT7R in the descending pain pathways using a rat model of migraine induced by repetitive dural electrical stimulation (DES). DESIGN: 64 male Sprague-Dawley rats were randomly divided into four groups: Normal group; DES group (receiving dural electrical stimulation only); DES+GB20 group (DES model group treated with EA at GB20); and DES+Sham group (DES model group treated with EA at a non-traditional (sham) acupuncture point). The presence of cutaneous allodynia was determined by measuring facial and hind-paw withdrawal latencies to electronic von-Frey. The expression of 5-HT7R in the descending pathways (periaqueductal grey, raphe magnus nucleus, and trigeminal nucleus caudalis) was assessed using immunofluorescence and Western blotting. RESULTS: Facial and hind-paw withdrawal thresholds were significantly increased in the DES+GB20 group compared with the untreated DES group. The expression of 5-HT7R was significantly decreased in the DES+GB20 group compared with the DES group (one-way analysis of variance (ANOVA), P<0.05). No significant differences in behaviour or expression were found between the rats in the DES+Sham group and the untreated DES group (one-way ANOVA, P>0.05). CONCLUSION: EA at GB20 may ameliorate central sensitisation in migraine by inhibiting the activation of 5-HT7 receptors in the descending pain pathway in a rat model of migraine.


Assuntos
Eletroacupuntura , Transtornos de Enxaqueca/terapia , Receptores de Serotonina/metabolismo , Pontos de Acupuntura , Animais , Humanos , Masculino , Transtornos de Enxaqueca/genética , Transtornos de Enxaqueca/metabolismo , Núcleo Magno da Rafe/metabolismo , Substância Cinzenta Periaquedutal/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Serotonina/genética
10.
Neurosci Lett ; 615: 78-82, 2016 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-26806036

RESUMO

Dysfunction in the central serotonin (5-HT) and norepinephrine (NE) systems cause depression and pain. Descending spinal pain modulatory pathways are important in the analgesic mechanisms of antidepressants, particularly serotonin and norepinephrine reuptake inhibitors (SNRIs). While many non-clinical studies have demonstrated the roles of central monoaminergic systems in pain, there is little evidence to illuminate the direct contribution of spinal descending pain modulatory systems independently of depressive-like behavior. To examine the effects of dysfunction of spinal monoaminergic systems on pain sensitivity, we established a rat chronic pain model by administering lumbar-intrathecal reserpine to minimize its influence on brain. Lumbar-intrathecal reserpine evoked persistent mechanical hypersensitivity and corresponding reductions in spinal 5-HT and NE concentrations (from 767.2 to 241.6ng/g and from 455.9 to 41.7ng/g, respectively after reserpine 30nmol). Lumbar-intrathecal reserpine did not deplete brain monoamines or bring about depressive-like behavior in the forced swim test. Spinal monoamines depletion-induced pain sensitivity was ameliorated by lumbar-intrathecal administration of the SNRIs (duloxetine and milnacipran) in dose-dependent manners. These suggest that increased pain sensitivity could be induced by dysfunction solely of the descending pain modulatory system, regardless of depressive-like behavior, and lumbar-intrathecal administration of SNRIs could ameliorate the pain sensitivity which might be mediated by affecting the descending pain modulatory system in the spinal cord, not via their antidepressant effects.


Assuntos
Analgésicos/farmacologia , Monoaminas Biogênicas/metabolismo , Dor Crônica/tratamento farmacológico , Neurônios/metabolismo , Inibidores da Recaptação de Serotonina e Norepinefrina/farmacologia , Medula Espinal/metabolismo , Administração Cutânea , Analgésicos/administração & dosagem , Animais , Encéfalo/metabolismo , Dor Crônica/metabolismo , Dor Crônica/fisiopatologia , Ciclopropanos/administração & dosagem , Ciclopropanos/farmacologia , Cloridrato de Duloxetina/administração & dosagem , Cloridrato de Duloxetina/farmacologia , Injeções Espinhais , Milnaciprano , Norepinefrina/metabolismo , Limiar da Dor , Ratos Sprague-Dawley , Reserpina/administração & dosagem , Reserpina/farmacologia , Serotonina/metabolismo , Inibidores da Recaptação de Serotonina e Norepinefrina/uso terapêutico , Medula Espinal/efeitos dos fármacos , Proteínas Vesiculares de Transporte de Monoamina/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa