Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Mass Spectrom Rev ; 42(2): 751-778, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-34642958

RESUMO

Desorption electrospray ionization mass spectrometry imaging (DESI-MSI) is one of the least specimen destructive ambient ionization mass spectrometry tissue imaging methods. It enables rapid simultaneous mapping, measurement, and identification of hundreds of molecules from an unmodified tissue sample. Over the years, since its first introduction as an imaging technique in 2005, DESI-MSI has been extensively developed as a tool for separating tissue regions of various histopathologic classes for diagnostic applications. Recently, DESI-MSI has also emerged as a versatile technique that enables drug discovery and can guide the efficient development of drug delivery systems. For example, it has been increasingly employed for uncovering unique patterns of in vivo drug distribution, the discovery of potentially treatable biochemical pathways, revealing novel druggable targets, predicting therapeutic sensitivity of diseased tissues, and identifying early tissue response to pharmacological treatment. These and other recent advances in implementing DESI-MSI as the tool for the development of novel therapies are highlighted in this review.


Assuntos
Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização por Electrospray/métodos , Descoberta de Drogas , Sistemas de Liberação de Medicamentos , Diagnóstico por Imagem
2.
J Pathol ; 261(2): 125-138, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37555360

RESUMO

Due to limited biopsy samples, ~20% of DCIS lesions confirmed by biopsy are upgraded to invasive ductal carcinoma (IDC) upon surgical resection. Avoiding underestimation of IDC when diagnosing DCIS has become an urgent challenge in an era discouraging overtreatment of DCIS. In this study, the metabolic profiles of 284 fresh frozen breast samples, including tumor tissues and adjacent benign tissues (ABTs) and distant surrounding tissues (DSTs), were analyzed using desorption electrospray ionization-mass spectrometry (DESI-MS) imaging. Metabolomics analysis using DESI-MS data revealed significant differences in metabolite levels, including small-molecule antioxidants, long-chain polyunsaturated fatty acids (PUFAs) and phospholipids between pure DCIS and IDC. However, the metabolic profile in DCIS with invasive carcinoma components clearly shifts to be closer to adjacent IDC components. For instance, DCIS with invasive carcinoma components showed lower levels of antioxidants and higher levels of free fatty acids compared to pure DCIS. Furthermore, the accumulation of long-chain PUFAs and the phosphatidylinositols (PIs) containing PUFA residues may also be associated with the progression of DCIS. These distinctive metabolic characteristics may offer valuable indications for investigating the malignant potential of DCIS. By combining DESI-MS data with machine learning (ML) methods, various breast lesions were discriminated. Importantly, the pure DCIS components were successfully distinguished from the DCIS components in samples with invasion in postoperative specimens by a Lasso prediction model, achieving an AUC value of 0.851. In addition, pixel-level prediction based on DESI-MS data enabled automatic visualization of tissue properties across whole tissue sections. Summarily, DESI-MS imaging on histopathological sections can provide abundant metabolic information about breast lesions. By analyzing the spatial metabolic characteristics in tissue sections, this technology has the potential to facilitate accurate diagnosis and individualized treatment of DCIS by inferring the presence of IDC components surrounding DCIS lesions. © 2023 The Pathological Society of Great Britain and Ireland.


Assuntos
Neoplasias da Mama , Carcinoma Ductal de Mama , Carcinoma Intraductal não Infiltrante , Humanos , Feminino , Carcinoma Intraductal não Infiltrante/diagnóstico por imagem , Carcinoma Intraductal não Infiltrante/metabolismo , Carcinoma Ductal de Mama/diagnóstico por imagem , Carcinoma Ductal de Mama/patologia , Antioxidantes , Espectrometria de Massas , Neoplasias da Mama/diagnóstico por imagem
3.
Environ Sci Technol ; 58(31): 13986-13994, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-38992920

RESUMO

Previous studies have highlighted the toxicity of pharmaceuticals and personal care products (PPCPs) in plants, yet understanding their spatial distribution within plant tissues and specific toxic effects remains limited. This study investigates the spatial-specific toxic effects of carbamazepine (CBZ), a prevalent PPCP, in plants. Utilizing desorption electrospray ionization mass spectrometry imaging (DESI-MSI), CBZ and its transformation products were observed predominantly at the leaf edges, with 2.3-fold higher concentrations than inner regions, which was confirmed by LC-MS. Transcriptomic and metabolic analyses revealed significant differences in gene expression and metabolite levels between the inner and outer leaf regions, emphasizing the spatial location's role in CBZ response. Notably, photosynthesis-related genes were markedly downregulated, and photosynthetic efficiency was reduced at leaf edges. Additionally, elevated oxidative stress at leaf edges was indicated by higher antioxidant enzyme activity, cell membrane impairment, and increased free fatty acids. Given the increased oxidative stress at the leaf margins, the study suggests using in situ Raman spectroscopy for early detection of CBZ-induced damage by monitoring reactive oxygen species levels. These findings provide crucial insights into the spatial toxicological mechanisms of CBZ in plants, forming a basis for future spatial toxicology research of PPCPs.


Assuntos
Carbamazepina , Carbamazepina/toxicidade , Folhas de Planta/efeitos dos fármacos , Estresse Oxidativo , Multiômica
4.
Anal Bioanal Chem ; 416(8): 1883-1906, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38367042

RESUMO

In this paper, we establish an in situ visualization analysis method to image the spatial distribution of metabolites in different parts (sclerotium, coremium) and different microregions of Cordyceps cicadae (C. cicadae) to achieve the in situ visual characterization of tissues for a variety of metabolites such as nucleosides, amino acids, polysaccharides, organic acids, fatty acids, and so on. The study included LC-MS chemical composition identification, preparation of C. cicadae tissue sections, DEDI-MSI analysis, DESI combined with Q-TOF/MS to obtain high-resolution imaging of mass-to-charge ratio and space, imaging of C. cicadae in positive-negative ion mode with a spatial resolution of 100 µm, and localizing and identifying its chemical compositions based on its precise mass. A total of 62 compounds were identified; nucleosides were mainly distributed in the coremium, L-threonine and DL-isoleucine, and other essential amino acids; peptides were mainly distributed in the sclerotium of C. cicadae; and the rest of the amino acids did not have a clear pattern; sugars and sugar alcohols were mainly distributed in the coremium of C. cicadae; organic acids and fatty acids were distributed in the nucleus of C. cicadae more than in the sclerotium, and the mass spectrometry imaging method is established in the research. The mass spectrometry imaging method established in this study is simple and fast and can visualize and analyse the spatial distribution of metabolites of C. cicadae, which is of great significance in characterizing the metabolic network of C. cicadae, and provides support for the quality evaluation of C. cicadae and the study of the temporal and spatial metabolic network of chemical compounds.


Assuntos
Cordyceps , Distribuição Tecidual , Espectrometria de Massas , Cordyceps/química , Cordyceps/metabolismo , Nucleosídeos/química , Ácidos Graxos/metabolismo , Aminoácidos/metabolismo , Espectrometria de Massas por Ionização por Electrospray/métodos
5.
J Proteome Res ; 22(1): 36-46, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36564034

RESUMO

Fatty aldehydes (FALs) are involved in various biological processes, and their abnormal metabolism is related to the occurrence and development of neurological diseases. Because of their low ionization efficiency, methods for in situ detection and mass spectrometry imaging (MSI) analysis of FALs remain underreported. On-tissue chemical tagging of hardly ionizable target analytes with easily ionized moieties can improve ionization efficiency and detection sensitivity in MSI experiments. In this study, an on-tissue chemical derivatization-air-flow-assisted desorption electrospray ionization-MSI method was developed to visualize FALs in the rat brain. The method showed high sensitivity and specificity, allowing the use of in situ high-resolution MS3 to identify FALs. The methodology was applied to investigate the region-specific distribution of FALs in the brains of control and diabetic encephalopathy (DE) rats. In DE rats, FALs were found to be significantly enriched in various brain regions, especially in the cerebral cortex, hippocampus, and amygdala. Thus, increased FAL levels and oxidative stress occurred in a region-dependent manner, which may contribute to cognitive function deficits in DE. In summary, we provide a novel method for the in situ detection of FALs in biological tissues as well as new insights into the potential pathogenesis of DE.


Assuntos
Diabetes Mellitus , Espectrometria de Massas por Ionização por Electrospray , Ratos , Animais , Espectrometria de Massas por Ionização por Electrospray/métodos , Aldeídos , Encéfalo/diagnóstico por imagem , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
6.
Int J Mol Sci ; 21(10)2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32443844

RESUMO

Plasma and tissue from breast cancer patients are valuable for diagnostic/prognostic purposes and are accessible by multiple mass spectrometry (MS) tools. Liquid chromatography-mass spectrometry (LC-MS) and ambient mass spectrometry imaging (MSI) were shown to be robust and reproducible technologies for breast cancer diagnosis. Here, we investigated whether there is a correspondence between lipid cancer features observed by desorption electrospray ionization (DESI)-MSI in tissue and those detected by LC-MS in plasma samples. The study included 28 tissues and 20 plasma samples from 24 women with ductal breast carcinomas of both special and no special type (NST) along with 22 plasma samples from healthy women. The comparison of plasma and tissue lipid signatures revealed that each one of the studied matrices (i.e., blood or tumor) has its own specific molecular signature and the full interposition of their discriminant ions is not possible. This comparison also revealed that the molecular indicators of tissue injury, characteristic of the breast cancer tissue profile obtained by DESI-MSI, do not persist as cancer discriminators in peripheral blood even though some of them could be found in plasma samples.


Assuntos
Neoplasias da Mama/metabolismo , Carcinoma Ductal/metabolismo , Metabolismo dos Lipídeos , Lipidômica/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias da Mama/sangue , Carcinoma Ductal/sangue , Feminino , Humanos , Lipídeos/sangue , Pessoa de Meia-Idade
7.
Proc Natl Acad Sci U S A ; 112(21): 6539-44, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-25964345

RESUMO

The MYC oncogene is frequently mutated and overexpressed in human renal cell carcinoma (RCC). However, there have been no studies on the causative role of MYC or any other oncogene in the initiation or maintenance of kidney tumorigenesis. Here, we show through a conditional transgenic mouse model that the MYC oncogene, but not the RAS oncogene, initiates and maintains RCC. Desorption electrospray ionization-mass-spectrometric imaging was used to obtain chemical maps of metabolites and lipids in the mouse RCC samples. Gene expression analysis revealed that the mouse tumors mimicked human RCC. The data suggested that MYC-induced RCC up-regulated the glutaminolytic pathway instead of the glycolytic pathway. The pharmacologic inhibition of glutamine metabolism with bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide impeded MYC-mediated RCC tumor progression. Our studies demonstrate that MYC overexpression causes RCC and points to the inhibition of glutamine metabolism as a potential therapeutic approach for the treatment of this disease.


Assuntos
Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Genes myc , Glutamina/metabolismo , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Animais , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Progressão da Doença , Inibidores Enzimáticos/farmacologia , Genes ras , Glutaminase/antagonistas & inibidores , Glutaminase/metabolismo , Humanos , Neoplasias Renais/patologia , Metabolismo dos Lipídeos , Camundongos , Camundongos SCID , Camundongos Transgênicos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Neoplásico/genética , RNA Neoplásico/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Sulfetos/farmacologia , Tiadiazóis/farmacologia , Regulação para Cima
8.
Atherosclerosis ; 364: 20-28, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36459728

RESUMO

BACKGROUND AND AIMS: Carotid atherosclerosis is an important cause of ischemic stroke. Lipids play a key role in the progression of atherosclerosis. To date, the spatial lipid profile of carotid atherosclerotic plaques related to histology has not been systematically investigated. METHODS: Carotid atherosclerosis samples from 12 patients were obtained and classified into four classical pathological stages (preatheroma, atheroma, fibroatheroma and complicated lesion) by histological staining. Desorption electrospray ionization-mass spectrometry imaging (DESI-MSI) was used to investigate the lipid profile of carotid atherosclerosis, and correlated it with histological information. Bioinformatics technology was used to process MSI data among different pathological stages of atherosclerosis lesions. RESULTS: A total of 55 lipids (26 throughout cross-section regions [TCSRs], 13 in lipid-rich regions [LRRs], and 16 in collagen-rich regions [CRRs]) were initially identified in carotid plaque from one patient. Subsequently, 32 of 55 lipids (12 in TCSRs, eight in LRRs, and 12 in CRRs) were further screened in 11 patients. Pathway enrichment analysis showed that multiple metabolic pathways, such as fat digestion and absorption, cholesterol metabolism, lipid and atherosclerosis, were enriched in TCSRs; sphingolipid signaling pathway, necroptosis pathway were enriched in LRRs; and glycerophospholipid metabolism, ether lipid metabolism pathway were mainly enriched in CRRs. CONCLUSIONS: This study comprehensively showed the spatial lipid metabolism footprint in human carotid atherosclerotic plaques. The lipid profiles and related metabolism pathways in three regions of plaque with disease progression were different markedly, suggesting that the different metabolic mechanisms in these regions of carotid plaque may be critical in atherosclerosis progression.


Assuntos
Aterosclerose , Doenças das Artérias Carótidas , Placa Aterosclerótica , Humanos , Placa Aterosclerótica/patologia , Doenças das Artérias Carótidas/patologia , Aterosclerose/patologia , Artérias Carótidas/patologia , Lipídeos/química
9.
J Pharm Biomed Anal ; 229: 115351, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-36958114

RESUMO

Compounds such as Sildenafil, which bring potential health risks to consumers, have been illegally added to functional food. The public security department hopes to quickly screen for illegal additives. The quantity of seized samples is often large and their compositions are unknown; it is necessary to screen the unknown samples qualitatively and sometimes quantitatively. In this paper, a new method for rapid screening of 39 common illegal additives in six categories of functional food based on DESI-MSI technology is proposed, and the DESI-MSI library is established, which can be used for exclusive and sensitive qualitative confirmation of suspicious samples. A new carrier material that can be used for rapid qualitative detection of solid sample is discovered. The samples require simple or even no pretreatment to carry out high-resolution imaging through the imaging function of DESI-MSI. The imaging results are clear and intuitive, and can achieve fast and high-throughput qualitative identification of illegally added compounds. This method has good linearity, accuracy, precision, and little effect of matrix, so it can roughly quantify the illegal additives in functional products. Twenty-one batches of unknown samples were detected by DESI-MSI, and the positive results were confirmed by LC-MS/MS (QQQ). The results showed that the DESI-MSI method was effective and reliable. DESI-MSI with self-made database is a promising method for rapid screening of illegal additives in functional food, which can be widely used in grass-roots police stations.


Assuntos
Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Espectrometria de Massas por Ionização por Electrospray/métodos , Cromatografia Líquida , Alimento Funcional
10.
Atherosclerosis ; 385: 117340, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37913561

RESUMO

BACKGROUND AND AIMS: Lipids play an important role in atherosclerotic plaque development and are interesting candidate predictive biomarkers. However, the link between circulating lipids, accumulating lipids in the vessel wall, and plaque destabilization processes in humans remains largely unknown. This study aims to provide new insights into the role of lipids in atherosclerosis using lipidomics and mass spectrometry imaging to investigate lipid signatures in advanced human carotid plaque and plasma samples. METHODS: We used lipidomics and desorption electrospray ionization mass spectrometry imaging (DESI-MSI) to investigate lipid signatures of advanced human carotid plaque and plasma obtained from patients who underwent carotid endarterectomy (n = 14 out of 17 whose plaque samples were analyzed by DESI-MSI). Multivariate data analysis and unsupervised clustering were applied to identify lipids that were the most discriminative species between different patterns in plaque and plasma. These patterns were interpreted by quantitative comparison with conventional histology. RESULTS: Lipidomics detected more than 300 lipid species in plasma and plaque, with markedly different relative abundances. DESI-MSI visualized the spatial distribution of 611 lipid-related m/z features in plaques, of which 330 m/z features could be assigned based on exact mass, comparison to the lipidomic data, and high mass resolution MSI. Matching spatial lipid patterns to histological areas of interest revealed several molecular species that were colocalized with pertinent disease processes in plaque including specific sphingomyelin and ceramide species with calcification, phospholipids and free fatty acids with inflammation, and triacylglycerols and phosphatidylinositols with fibrin-rich areas. CONCLUSIONS: By comparing lipid species in plaque and plasma, we identified those circulating species that were also prominently present in plaque. Quantitative comparison of lipid spectral patterns with histology revealed the presence of specific lipid species in destabilized plaque areas, corroborating previous in vitro and animal studies.


Assuntos
Aterosclerose , Placa Aterosclerótica , Animais , Humanos , Espectrometria de Massas , Placa Aterosclerótica/química , Artérias Carótidas , Fosfolipídeos , Espectrometria de Massas por Ionização por Electrospray/métodos
11.
Metabolites ; 13(4)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37110166

RESUMO

Colorectal cancer (CRC) is the second leading cause of cancer deaths. Despite recent advances, five-year survival rates remain largely unchanged. Desorption electrospray ionization mass spectrometry imaging (DESI) is an emerging nondestructive metabolomics-based method that retains the spatial orientation of small-molecule profiles on tissue sections, which may be validated by 'gold standard' histopathology. In this study, CRC samples were analyzed by DESI from 10 patients undergoing surgery at Kingston Health Sciences Center. The spatial correlation of the mass spectral profiles was compared with histopathological annotations and prognostic biomarkers. Fresh frozen sections of representative colorectal cross sections and simulated endoscopic biopsy samples containing tumour and non-neoplastic mucosa for each patient were generated and analyzed by DESI in a blinded fashion. Sections were then hematoxylin and eosin (H and E) stained, annotated by two independent pathologists, and analyzed. Using PCA/LDA-based models, DESI profiles of the cross sections and biopsies achieved 97% and 75% accuracies in identifying the presence of adenocarcinoma, using leave-one-patient-out cross validation. Among the m/z ratios exhibiting the greatest differential abundance in adenocarcinoma were a series of eight long-chain or very-long-chain fatty acids, consistent with molecular and targeted metabolomics indicators of de novo lipogenesis in CRC tissue. Sample stratification based on the presence of lympovascular invasion (LVI), a poor CRC prognostic indicator, revealed the abundance of oxidized phospholipids, suggestive of pro-apoptotic mechanisms, was increased in LVI-negative compared to LVI-positive patients. This study provides evidence of the potential clinical utility of spatially-resolved DESI profiles to enhance the information available to clinicians for CRC diagnosis and prognosis.

12.
Food Chem Toxicol ; 161: 112851, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35139434

RESUMO

Madder color (MC), a natural dye isolated from Rubia tinctorum, is a potent carcinogen that targets the outer stripe of outer medulla (OSOM) in the kidneys of rats. To clarify the role of MC components in renal carcinogenesis, we examined distributions of MC components and metabolites in the kidneys of rats treated with MC using desorption electrospray ionization-mass spectrometry imaging (DESI-MSI). Alizarin, lucidin, munjistin, nordamnacanthal, purpurin, pseudopurpurin, rubiadin, and some other metabolites detected and identified by liquid chromatography time-of-flight MS analysis of rat serum 1 h after MC administration were subjected to DESI-MSI. This analysis enabled visualization of the distribution of anthraquinones in the kidney, and the ion images showed a characteristic distribution according to their chemical structure. Among the components, lucidin and rubiadin specifically localized in the OSOM, suggesting that their genotoxicity was a direct cause of MC carcinogenesis. Alizarin showed greater distribution in the OSOM than the cortex and may therefore participate in renal carcinogenicity owing to its tumor-promoting activity. Overall, our data suggested that the distribution of carcinogenic components to the OSOM was responsible for the site-specific renal carcinogenicity of MC and that DESI-MSI analysis may be a powerful tool for exploring the mechanisms of chemical carcinogenesis.


Assuntos
Antraquinonas/metabolismo , Rim/metabolismo , Extratos Vegetais/química , Raízes de Plantas/química , Rubia/química , Animais , Rim/química , Masculino , Estrutura Molecular , Extratos Vegetais/metabolismo , Ratos , Ratos Endogâmicos F344 , Espectrometria de Massas por Ionização por Electrospray
13.
Arab J Chem ; 15(11): 104302, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36189434

RESUMO

Traditional Chinese medicine (TCM) is the key to unlock treasures of Chinese civilization. TCM and its compound play a beneficial role in medical activities to cure diseases, especially in major public health events such as novel coronavirus epidemics across the globe. The chemical composition in Chinese medicine formula is complex and diverse, but their effective substances resemble "mystery boxes". Revealing their active ingredients and their mechanisms of action has become focal point and difficulty of research for herbalists. Although the existing research methods are numerous and constantly updated iteratively, there is remain a lack of prospective reviews. Hence, this paper provides a comprehensive account of existing new approaches and technologies based on previous studies with an in vitro to in vivo perspective. In addition, the bottlenecks of studies on Chinese medicine formula effective substances are also revealed. Especially, we look ahead to new perspectives, technologies and applications for its future development. This work reviews based on new perspectives to open horizons for the future research. Consequently, herbal compounding pharmaceutical substances study should carry on the essence of TCM while pursuing innovations in the field.

14.
J Am Soc Mass Spectrom ; 31(4): 1000-1003, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32167767

RESUMO

Documents with handwritten portions are often susceptible to adulteration, forgery, and addition of entries, raising a problem of social concern. In this study, DESI ionization with imaging capabilities is applied to identify fraud in handwritten documents made using erasable pens of the chemical method of erasing (other than the usual physical methods). A fraud procedure was simulated in which an original entry made in white office paper was erased and replaced with a new one. The areas were directly analyzed using a DESI-MSI ion source coupled to a Q-Extractive mass spectrometer. Chemical images were obtained mapping the intensity of selected ions, spelling out each part of the fraud process as irrefutable evidence of its occurrence. Thus, the potential application of DESI-MSI in detecting fraud in suspect documents is demonstrated as a useful, simple, and fast alternative for the traditional techniques employed in these situations.

15.
Artigo em Chinês | WPRIM | ID: wpr-1030659

RESUMO

Objective To explore the distribution characteristics of endogenous metabolites in Crocus sativus L. corms from different origins. Methods A method based on desorption electrospray ionization mass spectrometry imaging and optimized sample pretreatment was developed for directly visualize metabolites in C. sativus corms. Results In situ characterization of metabolites such as flavonoids, organic acids, amino acids, carotenoids, and cyclic enol ether terpene glycosides was achieved. L-Citruline, phenylacetylglycine, sativol, and geniposide were specifically distributed in the corms. Apigenin 7-(6''-O-acetyl)-glucoside, isorhamnetin-3-O-β-D-Glucoside, dhurrin 6'-glucoside, and Apigenin 7-O-diglucuronide were mainly distributed in the terminal bud. For compounds distributed in the corms, the highest abundance was found in corms from Shanghai, followed by Zhejiang and the lowest from Anhui. Conclusion The distribution of metabolites in different parts of C. sativus corms from different origins and the same origin varies significantly. Flavonoids and flavonoid derivatives such as isorhamnetin-3-O-β-D-Glucoside and apigenin derivatives are mainly distributed in the terminal buds, in addition, the natural plant protection agent dhurrin 6'-glucoside is also mainly distributed in the terminal corms, whereas amino acids, which are used as energy and material supplies, are mainly accumulated in the corms.

16.
Artigo em Chinês | WPRIM | ID: wpr-1017176

RESUMO

ObjectiveTo investigate the brain absorption components of Tianyuan Zhitong prescription and their distribution based on ultra-high performance liquid chromatography-quadrupole-time-of-flight mass spectrometry(UPLC-Q-TOF-MS), desorption electrospray ionization mass spectrometry imaging(DESI-MSI) and hyperspectral imaging techniques. MethodTen BALB/c mice were randomly divided into blank group(n=3) and administration group(n=7), the administration group was gavaged with 0.3 mL of Tianyuan Zhitong prescription liquid at a concentration of about 5 g·mL-1 of the raw material, and the blank group was gavaged with an equal volume of normal saline, and the whole brain of the mice were taken for the preparation of tissue homogenates and frozen sections, respectively. The tissue homogenates were qualitatively analyzed by UPLC-Q-TOF-MS for the brain absorption components in positive and negative ion modes, frozen sections were used for imaging to observe the distribution of these components in the brain. Cytoviva dark-field enhancement microscope was used to perform hyperspectral imaging scanning on the brain sections of mice from each group, and the scattered light data of at least 1 000 pixels in the visible-near-infrared(400-1 000 nm) band in the microscopic field of view were collected and average spectrum were created, which were used to compare the components in the brain tissues of mice from the blank and administration groups. ResultA total of 27 brain absorption components of Tianyuan Zhitong prescription were identified by UPLC-Q-TOF-MS, including 10 organic acids, 5 glycosides, 4 alkaloids, 1 phenol, 4 flavonoids, 2 phthalides and 1 other compound, which were mainly derived from Gastrodiae Rhizoma, Chuanxiong Rhizoma, vinegar-processed Corydalis Rhizoma, Ziziphi Spinosae Semen and processed Morindae Officinalis Radix. A total of 14 components were identified by mass spectrometry imaging, of which ferulic acid, tetrahydropalmatine and N-methyl dehydroberberine were mainly distributed in the cerebral cortex, vitamin B5, vemonoic acid and ricinoleic acid were mainly distributed in the hypothalamus, elemicin, octadecenic acid and octadecanoic acid were mainly distributed in the cortex and hypothalamus, while senkyunolide B, ligustilide, linoleic acid, 9,12-octadecadienoyl ethyl ester and spinosin were distributed in most regions of the brain tissues. Hyperspectral imaging showed that in the visible-near-infrared band range, the average spectrum of the brain tissues of mice in the administration group was significantly red-shifted, indicating that there were differences in the physical properties or contents of the chemical components in the brain between mice in the blank group and those in the administration group, and further verified the results of mass spectrometry imaging. ConclusionThrough the combination of UPLC-Q-TOF-MS and imaging techniques, the pharmacodynamic components of Tianyuan Zhitong prescription in the treatment of headache and the regional characteristics in brain tissue are clarified, which can provide reference for the selection of the index components of the research on the quality standard of this prescription and the research on the mechanism of the pharmacological effect.

17.
Artigo em Chinês | WPRIM | ID: wpr-846325

RESUMO

Objective: Using ultra-high performance liquid chromatography with diode array detection (UHPLC-DAD) and desorption electrospray ionization-mass spectrometry imaging (DESI-MSI) to analyze 15 batches of Shaoyao Gancao Decoction (SGD) substance benchmark and lyophilized powder in order to investigate the advantages of DESI-MSI in quality control of famous classical formulas. Methods: Taking SGD as the research model, fingerprints of the substance benchmark were established by UHPLC-DAD, and the content of index components (paeoniflorin, liquiritin, glycyrrhizic acid) and the yield of dry extract were also investigated. Meanwhile, as the research carrier, the lyophilized powder corresponding to SGD was dissolved in methanol and dotted on qualitative filter paper with quantitative capillary, and fixed it on the slide to make samples. The samples were analyzed on a DESI-MSI system in positive and negative ion mode with methanol-formic acid (1 000:1, flow rate of 3 μL/min) as spray solvent, N2 as spray gas (pressure of 0.5 MPa). The scanning range was m/z 100-1 200, the spatial resolution was 300 μm, the ion source temperature was 120 ℃. Results: DESI-MSI can detect not only the index components of paeoniflorin, liquiritin, glycyrrhizic acid, but also the common peaks of albiflorin. At the same time, DESI-MSI could detect 11 other components from Glycyrrhizae Radix et Rhizoma and Paeoniae Radix Alba, such as licoricesaponin G2, licoricesaponin J2, gallic acid, citric acid, p-hydroxybenzoic acid, and present their relative content visually. The qualitative analysis ability of DESI-MSI was much better than UHPLC-DAD. Conclusion: DESI-MSI can be used as the quality control method for substance benchmark and lyophilized powder and dispensing granules of classical famous formulas with advantages of high sensitivity, strong analytical ability, no complex sample pretreatment, qualitative and relative content analysis of complex samples without reference substance.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa