Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Sensors (Basel) ; 23(17)2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37688111

RESUMO

Enhancing gasoline detergency is pivotal for enhancing fuel efficiency and mitigating exhaust emissions in gasoline vehicles. This study investigated gasoline vehicle emission characteristics with different gasoline detergency, explored synergistic emission reduction potentials, and developed versatile emission prediction models. The results indicate that improved fuel detergency leads to a reduction of 5.1% in fuel consumption, along with decreases of 3.2% in total CO2, 55.4% in CO, and 15.4% in HC emissions. However, during low-speed driving, CO2 and CO emissions reductions are limited, and HC emissions worsen. A synergistic emission reduction was observed, particularly with CO exhibiting a pronounced reduction compared to HC. The developed deep-learning-based vehicle emission model for different gasoline detergency (DPVEM-DGD) enables accurate emission predictions under various fuel detergency conditions. The Pearson correlation coefficients (Pearson's r) between predicted and measured values of CO2, CO, and HC emissions before and after adding detergency agents are 0.913 and 0.934, 0.895 and 0.915, and 0.931 and 0.969, respectively. The predictive performance improves due to reduced peak emissions resulting from improved fuel detergency. Elevated gasoline detergency not only reduces exhaust emissions but also facilitates more refined emission management to a certain extent.

2.
J Lipid Res ; 63(9): 100261, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35934110

RESUMO

Cyp2c70 is the liver enzyme in rodents responsible for synthesis of the primary 6-hydroxylated muricholate bile acid (BA) species. Cyp2c70 KO mice are devoid of protective, hydrophilic muricholic acids, leading to a more human-like BA composition and subsequent cholestatic liver injury. Pharmacological inhibition of the ileal BA transporter (IBAT) has been shown to be therapeutic in cholestatic models. Here, we aimed to determine if IBAT inhibition with SC-435 is protective in Cyp2c70 KO mice. As compared to WT mice, we found male and female Cyp2c70 KO mice exhibited increased levels of serum liver injury markers, and our evaluation of liver histology revealed increased hepatic inflammation, macrophage infiltration, and biliary cell proliferation. We demonstrate serum and histologic markers of liver damage were markedly reduced with SC-435 treatment. Additionally, we show hepatic gene expression in pathways related to immune cell activation and inflammation were significantly upregulated in Cyp2c70 KO mice and reduced to levels indistinguishable from WT with IBAT inhibition. In Cyp2c70 KO mice, the liver BA content was significantly increased, enriched in chenodeoxycholic acid, and more hydrophobic, exhibiting a hydrophobicity index value and red blood cell lysis properties similar to human liver BAs. Furthermore, we determined IBAT inhibition reduced the total hepatic BA levels but did not affect overall hydrophobicity of the liver BAs. These findings suggest that there may be a threshold in the liver for pathological accretion of hydrophobic BAs and reducing hepatic BA accumulation can be sufficient to alleviate liver injury, independent of BA pool hydrophobicity.


Assuntos
Colestase , Fígado , Animais , Ácidos e Sais Biliares/metabolismo , Proteínas de Transporte , Ácido Quenodesoxicólico/metabolismo , Colestase/metabolismo , Óxidos N-Cíclicos , Feminino , Humanos , Inflamação/metabolismo , Fígado/metabolismo , Masculino , Glicoproteínas de Membrana , Camundongos , Tropanos
3.
Int J Mol Sci ; 22(12)2021 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-34205441

RESUMO

The article shows that the type and concentration of inorganic salt can be translated into the structure of the bulk phase and the performance properties of ecological all-purpose cleaners (APC). A base APC formulation was developed. Thereafter, two types of salt (sodium chloride and magnesium chloride) were added at various concentrations to obtain different structures in the bulk phase. The salt addition resulted in the formation of spherical micelles and-upon addition of more electrolyte-of aggregates having a lamellar structure. The formulations had constant viscosities (ab. 500 mPa·s), comparable to those of commercial products. Essential physical-chemical and performance properties of the four formulations varying in salt types and concentrations were evaluated. It was found that the addition of magnesium salt resulted in more favorable characteristics due to the surface activity of the formulations, which translated into adequately high wettability of the investigated hydrophobic surfaces, and their ability to emulsify fat. A decreasing relationship was observed in foaming properties: higher salt concentrations lead to worse foaming properties and foam stability of the solutions. For the magnesium chloride composition, the effect was significantly more pronounced, as compared to the sodium chloride-based formulations. As far as safety of use is concerned, the formulations in which magnesium salt was used caused a much lesser irritation compared with the other investigated formulations. The zein value was observed to decrease with increasing concentrations of the given type of salt in the composition.


Assuntos
Detergentes/toxicidade , Detergentes/química , Cloreto de Magnésio/química , Cloreto de Sódio/química , Tensão Superficial , Molhabilidade
4.
Biofouling ; 31(9-10): 689-97, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26469384

RESUMO

Block co-polymer surfactants have been used for cleaning hydrogel medical devices that contact the body (e.g., contact lenses) because of their biocompatibility. This work examined the relationship between concentration and detergency of two non-ionic polymeric surfactants (Pluronic F127 and Triton X-100) for cleaning protein soil, with anionic surfactants (sodium dodecyl sulfate and sodium laureth sulfate) as positive controls. Surface plasmon resonance was used to quantify removal of simulated tear soil from self-assembled monolayer surfaces, and a microplate format was used to study the removal of fluorescently labeled soil proteins from contact lenses. While detergency increased as a function of concentration for anionic surfactants, it decreased with concentration for the two polymeric surfactants. The fact that the protein detergency of some non-ionic polymeric surfactants did not increase with concentration above the critical micelle concentration could have implications for optimizing the tradeoff between detergency and biocompatibility.


Assuntos
Incrustação Biológica/prevenção & controle , Lentes de Contato/microbiologia , Hidrogéis , Octoxinol/química , Poloxâmero/química , Tensoativos/química , Detergentes/química , Lubrificantes Oftálmicos/química , Dodecilsulfato de Sódio/análogos & derivados , Dodecilsulfato de Sódio/química , Soluções , Ressonância de Plasmônio de Superfície
5.
Int J Cosmet Sci ; 36(6): 606-12, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25234159

RESUMO

OBJECTIVE: In the present study, W/O microemulsions (MEs) were prepared for efficient removal of oily make-up cosmetics and the detergency characteristics were studied. METHODS: The W/O MEs were prepared by mixing of a spontaneous emulsifier, cosurfactant and oil, and solubilizing the mixture during addition of water. The wettability and emulsifying activity were, respectively, evaluated by measuring contact angle and absorbance after preparing a total of 20 samples using three emulsifying systems and seven oils. RESULTS: Based on the results, a lower viscosity of the oil component is favourable for higher wettability, and the lower the viscosity of the emulsifying systems, the higher the wettability of the ME. Except in the case of oleic acid (OA), oils having high polarity showed significant emulsifying activity. The equation describing [detergency(ΔE)=98.1wettability(cosθ)+120.5EAI(emulsifyingactivityindex)-77.1] was derived from the detergency measurement results, and it was verified that the wettability contributed more significantly to the detergency than the emulsifying activity. CONCLUSION: These results suggest that the prepared W/O microemulsions can be utilized as cleaning agents for efficient removal of oily make-up cosmetics.


Assuntos
Cosméticos/química , Emulsões/síntese química , Tensoativos/síntese química , Condutividade Elétrica , Emulsões/química , Emulsões/farmacologia , Humanos , Propriedades de Superfície , Tensoativos/química , Tensoativos/farmacologia , Viscosidade
6.
Int J Biol Macromol ; 279(Pt 1): 135107, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39197610

RESUMO

A hyperstable lipase from Thermotoga naphthophila (TnLip) was cloned and overexpressed as a soluble and active monomeric protein in an effectual mesophilic host system. Sequence study revealed that TnLip is a peptidase S9 prolyl oligopeptidase domain (acetyl esterase/lipase-like protein), belongs to alpha/beta (α/ß)-hydrolase superfamily containing a well-conserved α/ß-hydrolase fold and penta-peptide (GLSAG) motif. Various cultivation and induction strategies were applied to improve the heterologous expression and bacterial biomass, but TnLip intracellular activity was enhanced by 14.25- fold with IPTG-independent auto-induction approach after 16 h (26 °C, 150 rev min-1) incubation. Purified TnLip (35 kDa) showed peak activity at 85 °C in McIlvaine buffer (pH 7.0-8.0), and has great stability over a broad range of pH (5.0-10.0), and temperature (40-85 °C) for 8 h. TnLip exhibited prodigious resistance toward various commercial detergents, chemical additives, and salt. TnLip activity was improved by 170.51 %, 130.67 %, 127.42 %, 126.54 %, 126.61 %, 120.32 %, and 116.31 % with 50 % (v/v) of methanol, ethanol, n-butanol, isopropanol, acetone, glycerol, and acetic acid, respectively. Moreover, with 3.0 M of NaCl, and 10 mM of Ca2+, Mn2+, and Mg2+ TnLip activity was augmented by 210 %, 185.64 %, 152.03 %, and 116.26 %, respectively. TnLip has an affinity with various substrates (p-nitrophenyl ester and natural oils) but maximal hydrolytic activity was perceived with p-nitrophenyl palmitate (pNPP, 3600 U mg-1) and olive oil (1182.05 U mg-1). The values of Km (0.576 mM), Vmax (4216 µmol mg-1 min-1), VmaxKm-1 (7319.44 min-1), kcat (1106.74 s-1), and kcatKm-1 (1921.42 mM-1 s-1) were calculated using pNPP substrate. Additionally, TnLip degraded animals' fats and removed oil stains within 3 h and 5 min, respectively. All these features make halo-alkali-thermophilic TnLip as an auspicious contender for laundry detergents (cleaning bio-additive), fat degradation, wastewater treatment and endorse eco-friendly stewardship along with various other biotechnological applications.


Assuntos
Clonagem Molecular , Estabilidade Enzimática , Lipólise , Prolil Oligopeptidases , Serina Endopeptidases , Prolil Oligopeptidases/química , Prolil Oligopeptidases/metabolismo , Serina Endopeptidases/genética , Serina Endopeptidases/química , Serina Endopeptidases/metabolismo , Temperatura , Concentração de Íons de Hidrogênio , Lipase/genética , Lipase/química , Lipase/metabolismo , Isopropiltiogalactosídeo/farmacologia , Especificidade por Substrato , Sequência de Aminoácidos
7.
J Oleo Sci ; 73(1): 1-9, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38171725

RESUMO

Studies devised through the fusion of cleaning and environmental sciences can be summarized as follows: new cleaning kinetics applying a probability density function and a surface chemical approach to the aquatic toxicity of surfactants. Cleaning power analysis using the probability density functional method combines conventional cleaning kinetics using a first-order reaction equation with a risk analysis method using a probability density function. It is possible to analyze the cleaning mechanism from the obtained parameter values. It is also possible to determine whether the interaction between two different cleaning elements corresponds to a synergistic, additive, or offsetting effect. Studies on the aquatic toxicity of surfactants have focused on the surface tension at which surfactants exhibit toxicity, changes in toxicity due to water quality, and biodegradation, and the presence of adsorbed substances have been identified.


Assuntos
Tensoativos , Tensoativos/toxicidade , Tensoativos/química , Cinética
8.
Polymers (Basel) ; 15(15)2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37571208

RESUMO

Detergency determination for single polymeric fibers is of significant importance to screening effective detergents for laundry, but remains challenging. Herein, we demonstrate a novel and effective method to quantify the detergency for single polymeric fibers using a confocal laser scanning microscope (CLSM). It was applied to visualize the oil-removing process of single polymeric fibers and thus assess the detergency of various detergents. Four typical surfactants were selected for comparison, and a compounded detergent containing multiple components (e.g., anionic and nonionic surfactants, enzymes) was demonstrated to be the most effective and powerful soil-removing detergent because more than 50% of oil on the cotton fiber could be easily removed. Moreover, the oil removal process of three kinds of fibers (i.e., cotton, viscose, and polyester) was imaged and monitored by confocal microscopy. It was found that the percentage of the detergency of a single polyester fiber exceeded 70%, which is much higher than that of cotton and viscose fibers (~50%), which may be due to its relatively smooth surface. Compared to traditional methods, the CLSM imaging method is more feasible and effective to determine the detergency of detergents for single polymeric fibers.

9.
Dose Response ; 20(1): 15593258211062781, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35069049

RESUMO

Sapindus mukorossi Gaertn is also known as Mu Huanzi, You Huanzi, soap tree, etc. The pericarp of Sapindus mukorossi contains many saponins, which is a type of natural non-ionic surfactant. Its extract has vigorous surface activity and biological activities such as bacteriostasis, oxidation resistance, and free radical scavenging. The Sapindus mukorossi extract is an environmentally friendly washing product that microorganisms can be rapidly decompose in nature without any environmental pollution.This study aims to investigate the effects of E-beam and Co60-γ irradiation on the total saponins content in the crude extract of the S mukorossi. The S mukorossi powder is irradiated with E-beam and Co60-γ ray at doses of 0, 4, 6, 8, 10, and 12 kGy for E-beam and 0, 50, 100, 150, and 200 Gy, respectively, for Co60-γ ray. The changes in the content of total saponins in the crude extract, total detergency, and the bacteriostatic abilities before and after the irradiation were analyzed. The results showed that the content of total saponins in samples irradiated by E-beam was significantly higher than that in non-irradiated samples. The saponins yield was the highest at a radiation dose of 6 kGy, and the detergency and bacteriostatic ability were also the strongest. After low-dose Co6-γ irradiation, the total saponins in the S mukorossi crude extract, and detergency and bacteriostatic ability had no apparent change. Conclusion: E-beam irradiation at a dose of 6 kGy can effectively improve the content of total saponins in the crude extract of S mukorossi powder. In addition, its effects on detergency and bacteriostatic abilities are relatively significant. The findings provide sufficient reference data for the further development of S mukorossi commodities.

10.
Biotechnol Rep (Amst) ; 35: e00746, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35707314

RESUMO

A strain of Stenotrophomonas acidaminiphila, isolated from fermenting bean-processing wastewater, produced alkaline protease in pretreated cassava waste-stream, but with low yield. Strain improvement by alternate combinatorial random mutagenesis and bioprocess optimization using comparative statistical and neural network methods enhanced yield by 17.8-fold in mutant kGy-04-UV-25. Kinetics of production by selected mutant modeled by logistic and modified Gompertz functions revealed higher specific growth rate in mutant than in the parent strain, likewise volumetric and specific productivities. Purification by PEG/Na+ citrate aqueous two-phase system recovered 73.87% yield and 52.55-fold of protease. Its activity was stable at 5-35% NaCl, 45-75°C, and was significantly enhanced by 1-15 mM sodium dodecyl sulfate (SDS). The protease was inhibited by low concentrations of phenyl-methyl-sulfonyl fluoride but was activated by 1-5 mM Mn2+ suggesting a manganese-dependent serine­protease. The 45.7 kDa thermo-halo-stable alkaline protease demonstrated keratinolytic and blood-stain removal potentials showing prospects in textile and detergent industries, respectively.

11.
Drug Discov Ther ; 16(2): 72-77, 2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35474181

RESUMO

The detergency of special electrolytic-reduction ion water (S-100) was evaluated in comparison with typical synthetic surfactants. Furthermore, to examine the cleaning mechanism of S-100, various physicochemical characteristics of S-100 were measured and a comprehensive evaluation of cleaning was performed. S-100 (10%) had a detergency comparable to that of various surfactants, such as sodium dodecyl sulfate and sodium dodecyl benzene sulfonate, which are generally blended or mixed in residential detergents. In addition, concentrated aqueous solutions of 10% or more of S-100 showed stronger detergency. The cleaning mechanism of S-100 is mainly attributed to the effect of surface tension reduction due to dissolved hydrogen or hydrogen nanobubbles in S-100, and the alkalinity generated by electrolysis charged the surface of the dirt or adherend, resulting in a peeling effect.


Assuntos
Detergentes , Água , Detergentes/química , Eletrólise , Hidrogênio , Tensoativos/química
12.
ACS Appl Mater Interfaces ; 13(28): 33704-33712, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34235926

RESUMO

Lipases comprise one of the major enzyme classes in biotechnology with applications within, e.g., baking, brewing, biocatalysis, and the detergent industry. Understanding the mechanisms of lipase function and regulation is therefore important to facilitate the optimization of their function by protein engineering. Advances in single-molecule studies in model systems have provided deep mechanistic insights on lipase function, such as the existence of functional states, their dependence on regulatory cues, and their correlation to activity. However, it is unclear how these observations translate to enzyme behavior in applied settings. Here, single-molecule tracking of individual Thermomyces lanuginosus lipase (TLL) enzymes in a detergency application system allowed real-time direct observation of spatiotemporal localization, and thus diffusional behavior, of TLL enzymes on a lard substrate. Parallelized imaging of thousands of individual enzymes allowed us to observe directly the existence and quantify the abundance and interconversion kinetics between three diffusional states that we recently provided evidence to correlate with function. We observe redistribution of the enzyme's diffusional pattern at the lipid-water interface as well as variations in binding efficiency in response to surfactants and calcium, demonstrating that detergency effectors can drive the sampling of lipase functional states. Our single-molecule results combined with ensemble activity assays and enzyme surface binding efficiency readouts allowed us to deconvolute how application conditions can significantly alter protein functional dynamics and/or surface binding, both of which underpin enzyme performance. We anticipate that our results will inspire further efforts to decipher and integrate the dynamic nature of lipases, and other enzymes, in the design of new biotechnological solutions.


Assuntos
Cálcio/química , Hidrolases de Éster Carboxílico/química , Difusão , Eurotiales/enzimologia , Proteínas Fúngicas/química , Tensoativos/química , Ácidos Alcanossulfônicos/química , Éteres/química , Gorduras/química , Glicóis/química , Cadeias de Markov , Imagem Individual de Molécula , Triglicerídeos/química
13.
Int J Mol Sci ; 11(11): 4417-25, 2010 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-21151446

RESUMO

The defatted seed meal of Camellia oleifera has been used as a natural detergent and its extract is commercially utilized as a foam-stabilizing and emulsifying agent. The goal of this study was to investigate the foam properties and detergent ability of the saponins from the defatted seed meal of C. oleifera. The crude saponin content in the defatted seed meal of C. oleifera was 8.34 and the total saponins content in the crude saponins extract was 39.5% (w/w). The foaming power of the 0.5 crude saponins extract solution from defatted seed meal of C. oleifera was 37.1 of 0.5 SLS solution and 51.3% to that of 0.5% Tween 80 solution. The R5 value of 86.0% represents good foam stability of the crude saponins extracted from the defatted seed meal of the plant. With the reduction of water surface tension from 72 mN/m to 50.0 mN/m, the 0.5% crude saponins extract solution has wetting ability. The sebum-removal experiment indicated that the crude saponins extract has moderate detergency. The detergent abilities of the saponins from C. oleifera and Sapindus mukorossi were also compared.


Assuntos
Camellia/química , Detergentes/química , Saponinas/química , Tensão Superficial , Molhabilidade
14.
J Colloid Interface Sci ; 534: 64-71, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30212657

RESUMO

Optimising detergency at lower temperatures is of increasing interest due to environmental and economic factors, and requires a greater understanding of the effects of temperature on the adsorption of surfactant mixtures at interfaces. The adsorption properties of surfactant mixtures and biosurfactant/surfactant mixtures have been studied at room temperatures and at temperatures below ambient using surface tension and neutron reflectivity measurements. For the ternary surfactant mixture of octaethylene monododecyl ether, C12E8, sodium dodecyl 6-benzene sulfonate, LAS, and sodium dioxyethylene glycol monododecyl sulfate, SLES, the surface tension at the air-water interface increases with decreasing temperature. In contrast, there is a notable reduction in the increase in the surface tension with a decrease in temperature from 25 °C to 10 °C for the 5 component rhamnolipid/surfactant mixture of the mono-rhamnose, R1, and di-rhamnose, R2, with C12E8/LAS/SLES. The associated neutron reflectivity data for the ternary C12E8/LAS/SLES mixture and the significant observation is that the 3, 4, and 5-component mixtures containing rhamnolipids in conjunction with the other surfactants show changes in composition and adsorbed amounts of the individual components which are close to the experimental error. However the significant observation is that the neutron reflectivity data indicate that the improved surface tension tolerance at lower temperatures is associated with the dominance of the rhamnolipid adsorption in such mixtures. Hence the introduction of the rhamnolipids provides a tolerance to the adverse effects associated with reduced temperatures, and a potential for improved detergency at relatively low temperatures.


Assuntos
Tensoativos/química , Adsorção , Temperatura Baixa , Micelas , Nêutrons , Ramnose/química , Propriedades de Superfície , Tensão Superficial
15.
J Oleo Sci ; 67(2): 187-198, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29367481

RESUMO

Laundry detergency of solid non-particulate soil on polyester and cotton was investigated using a microemulsion-based formulation, consisting of an anionic extended surfactant (C12,13-4PO-SO4Na) and sodium mono-and di-methyl naphthalene sulfonate (SMDNS) as the hydrophilic linker, to provide a Winsor Type III microemulsion with an ultralow interfacial tension (IFT). In this work, methyl palmitate (palmitic acid methyl ester) having a melting point around 30°C, was used as a model solid non-particulate (waxy) soil. A total surfactant concentration of 0.35 wt% of the selected formulation (4:0.65 weight ratio of C12,13-4PO-SO4Na:SMDNS) with 5.3 wt% NaCl was able to form a middle phase microemulsion at a high temperature (40°C),which provided the highest oil removal level with the lowest oil redeposition and the lowest IFT, and was much higher than that with a commercial detergent or de-ionized water. Most of the detached oil, whether in liquid or solid state, was in an unsolubilized form. Hence, the dispersion stability of the detached oil droplets or solidified oil particles that resulted from the surfactant adsorption played an important role in the oil redeposition. For an oily detergency, the lower the system IFT, the higher the oil removal whereas for a waxy (non-particulate) soil detergency, the lower the contact angle, the higher the solidified oil removal. For a liquefied oil, the detergency mechanism was roll up and emulsification with dispersion stability, while that for the waxy soil (solid oil) was the detachment by wettability with dispersion stability.


Assuntos
Detergentes/química , Lavanderia , Palmitatos , Fibra de Algodão , Emulsões , Interações Hidrofóbicas e Hidrofílicas , Material Particulado , Poliésteres , Tensão Superficial , Tensoativos , Temperatura , Têxteis
16.
Carbohydr Polym ; 155: 432-439, 2017 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-27702532

RESUMO

Microwave-assisted synthesis of a new class of polymeric surfactants based on polygalacturonic acid (PGA) is presented. PGA is water-insoluble and not surface-active under normal conditions. Single-step hydrophilic modification of PGA with taurine (2-aminoethane sulfonic acid) renders it surface-active. The modification can be carried out either using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDCl) as a coupling agent or using microwave irradiation without a catalyst. Microwave irradiation significantly shortens reaction times and eliminates the need for a coupling agent. In all cases, functionalization was confirmed using 1H NMR, FTIR spectroscopy and elemental analysis. PGA-SO3 exhibits surface-active properties comparable to commercial surfactants, Triton X-100 and sodium lauryl sulfate. Detailed cytotoxicity evaluation performed using human dermal fibroblast (HDF) and human leukemic (HL-60) cell lines indicate that PGA-SO3 is not toxic even at 20 fold higher concentrations. These polymeric surfactants synthesized from PGA with no demonstrable cytotoxicity have the potential for serving as 'greener' alternatives to common petrochemical-based surfactants.

17.
J Oleo Sci ; 66(10): 1109-1120, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28924082

RESUMO

A method of analyzing the detergency of various soils by assuming normal distributions for the soil adhesion and soil removal forces was developed by considering the relationship between the soil type and the distribution profile of the soil removal force. The effect of the agitation speed on the soil removal was also analyzed by this method. Washing test samples were prepared by soiling fabrics with individual soils such as particulate soils, oily dyes, and water-soluble dyes. Washing tests were conducted using a Terg-O-Tometer and four repetitive washing cycles of 5 min each. The transition of the removal efficiencies was recorded in order to calculate the mean value (µrl) and the standard deviation (σrl) of the removal strength distribution. The level of detergency and the temporal alteration in the detergency can be represented by µrl and σrl, respectively. A smaller σrl indicates a smaller increase in the detergency with time, which also indicates the existence of a certain amount of soil with a strong adhesion force. As a general trend, the values of σrl were the greatest for the oily soils, followed by those of the water-soluble soils and particulate soils in succession. The relationship between the soil removal processes and the soil adhesion force was expressed on the basis of the transition of the distribution of residual soil. Evaluation of the effects of the agitation speed on µrl and Æ¡rl showed that σrl was not affected by the agitation speed; the value of µrl for solid soil and oily soil increased with increasing agitation, and the µrl of water-soluble soil was not specifically affected by the agitation speed. It can be assumed that the parameter Æ¡rl is related to the characteristics of the soil and the adhesion condition, and can be applied to estimating the soil removal mechanism.


Assuntos
Detergentes/química , Óleos , Poluentes do Solo , Solo , Têxteis , Adesividade , Fenômenos Mecânicos , Solubilidade , Água
18.
J Oleo Sci ; 66(7): 797-799, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28674329

RESUMO

The reactivity and detergency of a horseradish peroxidase reaction system with oleic acid, a non-hydrogen donor used as a soil component, were studied. Under a coexistent system of horseradish peroxidase and p-iodophenol, oleic acid decomposed quickly. In addition, because the coexistence of p-iodophenol provided detergency, a new function of horseradish peroxidase was shown.


Assuntos
Detergentes/química , Ácidos Graxos/química , Peroxidase do Rábano Silvestre/química , Iodobenzenos/química , Ácido Oleico/química
19.
J Oleo Sci ; 66(7): 677-687, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28626132

RESUMO

Liquid detergents are more convenient than powdered detergents as they dissolve readily in water, generate less dust and dosing is easy. However, the stability of liquid detergents is an issue of concern. Therefore, the objective of this research is to study the formulation requirement to produce heavy-duty liquid detergents based on palm-based methyl esters sulphonate (MES) with desirable properties and performance. MES is produced from renewable and sustainable feedstock suitable to replace the conventional fossil-based surfactant, linear alkyl benzene sulphonates (LAS). Five palm-based liquid detergents (PBLDs) were formulated using C16/18 MES as the primary surfactant. The physical properties, washing performance, stability and biodegradability of PBLDs were evaluated. Performance of the PBLDs was evaluated against two commercial liquid detergents which use LAS and alcohol glucoside as surfactant (benchmark product) and it was found that the PBLDs exhibited excellent performance. PBLDs can be formulated with or without phosphates and still demonstrate good detergency. The stability study of PBLDs indicated that no appreciable hydrolysis occurred. PBLDs exhibited better biodegradability profiles compared to commercial detergent containing LAS. PBLDs passed the 60% biodegradability level within 3 to 8 d, while commercial detergent took 24 d. It was shown that palm-based C16/18 MES could be potentially formulated into liquid detergents and gave better performance than LAS based liquid detergent. Attributes of C16/18 MES should not be overlooked, which include an abundant and naturally derived palm stearin as raw material and environmental safety profiles that are superior to most synthetic surfactants.


Assuntos
Alcanossulfonatos/química , Detergentes/química , Ésteres/química , Óleos de Plantas/química , Biodegradação Ambiental , Fenômenos Químicos , Química Farmacêutica , Estabilidade de Medicamentos , Óleo de Palmeira , Pós , Tensoativos , Fatores de Tempo , Água
20.
J Colloid Interface Sci ; 500: 96-104, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28402846

RESUMO

Nanofluids comprising nanoparticle suspensions in liquids have significant industrial applications. Prior work performed in our laboratory on the spreading of a nanofluid on a solid substrate has revealed that the structural disjoining pressure gradient caused by the layering of the nanoparticles normal to the confining plane of the film with the wedge profile is a new mechanism for oily soil detachment from the solid substrate. In the present work, we explore the application of this new mechanism for the solid particle detachment using latex particles on glass and a copper-coated wafer substrate using nanofluids. In the experiment, we employed the nanofluids to observe the detachment of the latex particles adhered to the glass substrate. We found that the structural disjoining pressure exerted by the nanoparticles can detach the solid particles on the glass substrate. A video depicting this mechanism is provided. Our results showed that the detachment of the particulate solid particles on the solid substrate was clearly enhanced by the nanofluids, compared to using only pure liquids (such as water). The detachment efficiency was increased with the increase in the nanoparticle volume fraction. Our nanofluids also showed a greater detachment efficiency for the particulate soil removal from the copper-coated wafer substrates compared to that of pure liquids. We found that the detachment efficiency is well correlated with the calculated structural disjoining energy. Our findings in this paper provide new insights for the novel application of the structural disjoining energy mechanism for cleaning hard surfaces.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa