Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
1.
J Fish Biol ; 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39362753

RESUMO

Water-choice experiments were conducted using glass eels of Anguilla japonica and A. marmorata, which coexist in subtropical East Asian rivers. The results of the present study, together with those of previous water-choice experiments, suggest that salinity enhances the odor preferences of glass eels. Compared to A. marmorata glass eels, A. japonica glass eels were more strongly attracted to water collected from a leaf detritus-accumulating backwater area than to normal river water under the same salinity conditions. These results suggest that interspecific differences in odor preferences may facilitate their habitat segregation.

2.
Med Vet Entomol ; 37(4): 715-722, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37354035

RESUMO

Competition is often cited as a central force that affects the distribution and performance of organisms. Ecological stoichiometry is the balance of elements within animal bodies that can be affected by resource acquisition and processing, as well as by intra- or interspecific interactions. Though relatively underexplored for mosquitoes, stoichiometry may provide a wealth of information linking ecological interactions to body nutrient content, and potentially on to pathogen transmission. Detritus, which often varies in nutrient content, forms the base of the food web within the small aquatic habitats occupied by larval mosquitoes, and detrital nutrient content can alter mosquito growth, survival, and population growth. The invasive mosquitoes Aedes albopictus (Diptera: Culicidae) and Aedes aegypti (Diptera: Culicidae) interact as larvae in aquatic systems, often altering their adult populations. Herein, we investigated how different detritus combinations as well as how intra- and interspecific densities of Ae. albopictus and Ae. aegypti would affect coexistence; we also measured how nutrient composition (carbon and nitrogen) and stoichiometry (C:N) of adults would vary with those interactions. Ae. albopictus survival, population growth, and stoichiometry were not affected by intra- or interspecific competition; nutrient values did vary with detritus ratios. However, Ae. aegypti nutrient content and stoichiometry and survival were negatively affected within the lowest nutrient environments in the presence of Ae. albopictus, but in the highest nutrient environments, both species showed high survival rates and population growth. This is the first study to show that adult mosquito body nutrients can be altered by interspecific interactions, and as nutrient content in adults has been linked to pathogen transmission, it provides a novel role of competition in affecting disease dynamics.


Assuntos
Aedes , Animais , Ecossistema , Cadeia Alimentar , Larva
3.
Glob Chang Biol ; 28(10): 3426-3440, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35092113

RESUMO

Global changes can alter plant inputs from both above- and belowground, which, thus, may differently affect soil carbon and microbial communities. However, the general patterns of how plant input changes affect them in forests remain unclear. By conducting a meta-analysis of 3193 observations from 166 experiments worldwide, we found that alterations in aboveground litter and/or root inputs had profound effects on soil carbon and microbial communities in forest ecosystems. Litter addition stimulated soil organic carbon (SOC) pools and microbial biomass, whereas removal of litter, roots or both (no inputs) decreased them. The increased SOC under litter addition suggested that aboveground litter inputs benefit SOC sequestration despite accelerated decomposition. Unlike root removal, litter alterations and no inputs altered particulate organic carbon, whereas all detrital treatments did not significantly change mineral-associated organic carbon. In addition, detrital treatments contrastingly altered soil microbial community, with litter addition or removal shifting it toward fungi, whereas root removal shifting it toward bacteria. Furthermore, the responses of soil carbon and microbial biomass to litter alterations positively correlated with litter input rate and total litter input, suggesting that litter input quantity is a critical controller of belowground processes. Taken together, these findings provide critical insights into understanding how altered plant productivity and allocation affects soil carbon cycling, microbial communities and functioning of forest ecosystems under global changes. Future studies can take full advantage of the existing plant detritus experiments and should focus on the relative roles of litter and roots in forming SOC and its fractions.


Assuntos
Microbiota , Solo , Biomassa , Carbono , Ecossistema , Florestas , Minerais , Microbiologia do Solo
4.
J Anim Ecol ; 91(8): 1582-1595, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35362147

RESUMO

In organisms with complex life cycles, the various stages occupy different habitats creating demographically open populations. The dynamics of these populations will depend on the occurrence and timing of stochastic influences relative to demographic density dependence, but understanding of these fundamentals, especially in the face of climate warming, has been hampered by the difficulty of empirical studies. Using a logically feasible organism, we conducted a replicated density-perturbation experiment to manipulate late-instar larvae of nine populations of a stream caddisfly, Zelandopsyche ingens, and measured the resulting abundance over 2 years covering the complete life cycle of one cohort to evaluate influences on dynamics. Negative density feedback occurred in the larval stage, and was sufficiently strong to counteract variation in abundance due to manipulation of larval density, adult caddis dispersal in the terrestrial environment as well as downstream drift of newly hatched and older larvae in the current. This supports theory indicating regulation of open populations must involve density dependence in local populations sufficient to offset variability associated with dispersal, especially during recruitment, and pinpoints the occurrence to late in the larval life cycle and driven by food resource abundance. There were large variations in adult, egg mass and early instar abundance that were not related to abundance in the previous stage, or the manipulation, pointing to large stochastic influences. Thus, the results also highlight the complementary nature of stochastic and deterministic influences on open populations. Such density dependence will enhance population persistence in situations where variable dispersal and transitioning between life stages frequently creates mismatches between abundance and the local availability of resources, such as might become more common with climate warming.


Assuntos
Ecossistema , Insetos , Animais , Humanos , Larva , Estágios do Ciclo de Vida , Densidade Demográfica , Dinâmica Populacional
5.
Oecologia ; 199(4): 951-963, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35980489

RESUMO

Functional trait diversity determines if ecosystem processes are sensitive to shifts in species abundances or composition. For example, trait variation suggests detritivores process detritus at different rates and make different contributions to whole-assemblage processing, which could be sensitive to compositional shifts. Here, we used a series of microcosm experiments to quantify species-specific coarse and fine particulate organic matter (CPOM and FPOM) processing for ten larval caddisfly species and three non-caddisfly species in high-elevation wetlands. We then compared trait-based models including life history, dietary, and extrinsic traits to determine which traits explained interspecific variation in detritus processing. Finally, we compared processing by mixed caddisfly assemblages in microcosms and natural ponds to additive predictions based on species-specific processing to determine if single-species effects are additive in multi-species assemblages. We found considerable interspecific variation in biomass-specific CPOM (13-fold differences) and FPOM (8-fold differences) processing. Furthermore, on a mass-specific basis, amphipods, chironomids, and caddisflies processed similar amounts of detritus, suggesting non-shredder taxa could process more than previously recognized. Trait models including dietary percent detritus, development rate, body size, and wetland hydroperiod explained 81 and 57% of interspecific variation in CPOM and FPOM processing, respectively. Finally, species-specific additive predictions were strikingly similar to mixed-assemblage processing in microcosms and natural ponds, with the largest difference being a 15% overestimate. Thus, additivity of species-specific processing suggests single-species rates may be useful for understanding functional consequences of shifting assemblages, and a trait-based approach to predicting species-specific processing could support generating additive predictions of whole-assemblage processing.


Assuntos
Dípteros , Ecossistema , Lagoas , Animais , Insetos , Invertebrados , Especificidade da Espécie
6.
Med Vet Entomol ; 36(1): 133-138, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34472128

RESUMO

Aedes aegypti larvae that develop in containers largely depend on plant detritus as a source of nutritional resources. However, few studies have evaluated the performance of immature individuals under natural amounts and quality of this food source. Here, we aimed to assess the effect of the variation in the accumulation time and amount of detritus on life history traits of Ae. aegypti under semi-field conditions. Ae. aegypti larvae were raised with detritus collected in different sites to represent natural variability in its amount, simulating short (28 days) and long (70 days) accumulation. A control with optimal food conditions (yeast) was included. Survival, development time and wing length of adults were compared among treatments. Survival was relatively high in all treatments. Development time was similar among treatments but significantly longer and more variable in containers with the lowest detritus amounts. Wing lengths were smaller in the treatments with detritus than in the control, especially in females. The results support the hypothesis that, in a temperate region, Ae. aegypti larvae may have a nutritional limitation, at least in some containers, and emphasize the importance of performing experiments that simulate the environmental conditions to which individuals are exposed in nature.


Assuntos
Aedes , Características de História de Vida , Animais , Argentina , Ecossistema , Feminino , Larva
7.
Bioessays ; 42(12): e2000149, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33174616

RESUMO

Ocean biology helps regulate global climate by fixing atmospheric CO2 and exporting it to deep waters as sinking detrital particles. New observations demonstrate that particle fragmentation is the principal factor controlling the depth to which these particles penetrate the ocean's interior, and hence how long the constituent carbon is sequestered from the atmosphere. The underlying cause is, however, poorly understood. We speculate that small, particle-associated copepods, which intercept and inadvertently break up sinking particles as they search for attached protistan prey, are the principle agents of fragmentation in the ocean. We explore this idea using a new marine ecosystem model. Results indicate that explicitly representing particle fragmentation by copepods in biogeochemical models offers a step change in our ability to understand the future evolution of biologically-mediated ocean carbon storage. Our findings highlight the need for improved understanding of the distribution, abundance, ecology and physiology of particle-associated copepods.


Assuntos
Sequestro de Carbono , Copépodes , Animais , Carbono , Dióxido de Carbono , Ecossistema , Oceanos e Mares
8.
Cryobiology ; 100: 1-11, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33639110

RESUMO

Autologous and allogeneic cryoimmunological medicine is a brand new branch of biomedical science and clinical practice that examines the features and formation of the immune response to immunogenic properties of normal and malignant biological structures altered by ultralow temperature, as well as specific changes in the structural and functional characteristics of immune cells and tissues after cryopreservation. Cryogenic protein denaturation phenomenon provides important insights into the mechanisms underlying the damage to cryogenic lesions immediately after freeze-thawing sessions in bioscience and medicine applications. The newly formed cryocoagulated protein components (cryomodified protein components) are crucial in cryoimmunology from the perspective of the formation of immunological substances at ultralow temperatures. Dendritic cells and cryocell detritus (cryocell debris) formed in living biological tissue after exposure to ultralow temperature in vivo may be an indication of one of the essential mechanisms involved in the cryoimmunological response of living structures to the impact of ultralow temperature exposure. Hence, the formation of new autologous and allogeneic cryoinduced immunogenic substances is a novel concept in biomedical research globally. Accordingly, this review focuses on issues concerning the peculiarities of the interaction of the immune system with a dominant malignant neoplasm tissue after exposure to subzero temperatures, considering the original cryogenic technical approaches. We present an overview of the state-of-the-art methods of cryoimmunology, and their major developments, past and present. The need for the delineation of structural and functional characteristics of the biological substrates of the immune system after cryopreservation that can be used in adoptive cell therapy, especially in cancer patients, is emphasized.


Assuntos
Criopreservação , Criopreservação/métodos , Congelamento , Humanos , Temperatura
9.
Proc Natl Acad Sci U S A ; 115(15): 3788-3793, 2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29581293

RESUMO

Heinrich Stadials significantly affected tropical precipitation through changes in the interhemispheric temperature gradient as a result of abrupt cooling in the North Atlantic. Here, we focus on changes in South American monsoon precipitation during Heinrich Stadials using a suite of speleothem records covering the last 85 ky B.P. from eastern South America. We document the response of South American monsoon precipitation to episodes of extensive iceberg discharge, which is distinct from the response to the cooling episodes that precede the main phase of ice-rafted detritus deposition. Our results demonstrate that iceberg discharge in the western subtropical North Atlantic led to an abrupt increase in monsoon precipitation over eastern South America. Our findings of an enhanced Southern Hemisphere monsoon, coeval with the iceberg discharge into the North Atlantic, are consistent with the observed abrupt increase in atmospheric methane concentrations during Heinrich Stadials.


Assuntos
Tempestades Ciclônicas , Camada de Gelo/química , Clima , Isótopos de Oxigênio/análise , Água do Mar/química , América do Sul , Temperatura
10.
Proc Biol Sci ; 287(1926): 20200330, 2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32345163

RESUMO

Large herbivores such as sea urchins and fish consume a high proportion of benthic primary production and frequently control the biomass of marine macrophytes. By contrast, small mesograzers, including gastropods and peracarid crustaceans, are abundant on seaweeds but have low per capita feeding rates and their impacts on marine macrophytes are difficult to predict. To quantify how mesograzers can affect macrophytes, we examined feeding damage by the herbivorous amphipods Sunamphitoe lessoniophila and Bircenna sp., which construct burrows in the stipes of subtidal individuals of the kelp Lessonia berteroana in northern-central Chile, southeast Pacific. Infested stipes showed a characteristic sequence of progressive tissue degeneration. The composition of the amphipod assemblages inside the burrows varied between the different stages of infestation of the burrows. Aggregations of grazers within burrows and microhabitat preference of the amphipods result in localized feeding, leading to stipe breakage and loss of substantial algal biomass. The estimated loss of biomass of single stipes varied between 1 and 77%. For the local kelp population, the amphipods caused an estimated loss of biomass of 24-44%. Consequently, small herbivores can cause considerable damage to large kelp species if their feeding activity is concentrated on structurally valuable algal tissue.


Assuntos
Anfípodes/fisiologia , Cadeia Alimentar , Kelp , Animais , Biomassa , Chile , Ecossistema , Peixes , Herbivoria , Ouriços-do-Mar
11.
J Anim Ecol ; 89(6): 1468-1481, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32124431

RESUMO

Human activities have dramatically altered global patterns of nitrogen (N) and phosphorus (P) availability. This pervasive nutrient pollution is changing basal resource quality in food webs, thereby affecting rates of biological productivity and the pathways of energy and material flow to higher trophic levels. Here, we investigate how the stoichiometric quality of basal resources modulates patterns of material flow through food webs by characterizing the effects of experimental N and P enrichment on the trophic basis of macroinvertebrate production and flows of dominant food resources to consumers in five detritus-based stream food webs. After a pre-treatment year, each stream received N and P at different concentrations for 2 years, resulting in a unique dissolved N:P ratio (target range from 128:1 to 2:1) for each stream. We combined estimates of secondary production and gut contents analysis to calculate rates of material flow from basal resources to macroinvertebrate consumers in all five streams, during all 3 years of study. Nutrient enrichment resulted in a 1.5× increase in basal resource flows to primary consumers, with the greatest increases from biofilms and wood. Flows of most basal resources were negatively related to resource C:P, indicating widespread P limitation in these detritus-based food webs. Nutrient enrichment resulted in a greater proportion of leaf litter, the dominant resource flow-pathway, being consumed by macroinvertebrates, with that proportion increasing with decreasing leaf litter C:P. However, the increase in efficiency with which basal resources were channelled into metazoan food webs was not propagated to macroinvertebrate predators, as flows of prey did not systematically increase following enrichment and were unrelated to basal resource flows. This study suggests that ongoing global increases in N and P supply will increase organic matter flows to metazoan food webs in detritus-based ecosystems by reducing stoichiometric constraints at basal trophic levels. However, the extent to which those flows are propagated to the highest trophic levels likely depends on responses of individual prey taxa and their relative susceptibility to predation.


Assuntos
Cadeia Alimentar , Rios , Animais , Ecossistema , Nitrogênio , Fósforo
12.
Oecologia ; 192(1): 227-239, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31834515

RESUMO

The production and fate of seaweed detritus is a major unknown in the global C-budget. Knowing the quantity of detritus produced, the form it takes (size) and its timing of delivery are key to understanding its role as a resource subsidy to secondary production and/or its potential contribution to C-sequestration. We quantified the production and release of detritus from 10 Laminaria hyperborea sites in northern Norway (69.6° N). Kelp biomass averaged 770 ± 100 g C m-2 while net production reached 499 ± 50 g C m-2 year-1, with most taking place in spring when new blades were formed. Production of biomass was balanced by a similar formation of detritus (478 ± 41 g C m-2 year-1), and both were unrelated to wave exposure when compared across sites. Distal blade erosion accounted for 23% of the total detritus production and was highest during autumn and winter, while dislodgment of whole individuals and/or whole blades corresponded to 24% of the detritus production. Detachment of old blades constituted the largest source of kelp detritus, accounting for > 50% of the total detrital production. Almost 80% of the detritus from L. hyperborea was thus in the form of whole plants or blades and > 60% of that was delivered as a large pulse within 1-2 months in spring. The discrete nature of the delivery suggests that the detritus cannot be retained and consumed locally and that some is exported to adjacent deep areas where it may subsidize secondary production or become buried into deep marine sediments as blue carbon.


Assuntos
Kelp , Carbono , Ecossistema , Florestas , Noruega
13.
Oecologia ; 193(1): 177-187, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32322986

RESUMO

Approximately 90% of all annual net primary productivity in temperate deciduous forests ends up entering the detritus food web as leaf litter. Due to chemical and physical differences from native litter, inputs from invasive species may impact the litter-dwelling community and ecosystem processes. We compared leaf-litter nutritional quality and decomposition rates from two invasive shrubs, Lonicera maackii and Rhamnus davurica, and the invasive tree Ailanthus altissima to litter from native oak-hickory forest in the Shenandoah Valley of Virginia, USA. We sampled litter from both invaded and uninvaded habitats and conducted litter colonization experiments to test for effects on microflora and the litter-dwelling arthropod communities. Litter from all three invasive species decomposed more rapidly than native litter, with native habitats averaging two to nearly five times as much litter by June. Invasive litter had higher nitrogen concentration and lower C:N ratios than native litter. Invasive litter supported greater growth of bacteria and fungi. Higher numbers of arthropods colonized invasive litter than native litter, but litter arthropod numbers on the forest floor of invaded habitats dropped in the early summer as litter decomposed. Litter had no effect on arthropod richness. Over short time scales, our results indicate that these invasive species represent beneficial, novel resources for the litter-dwelling community. However, the short-lived nature of this resource resulted in a crash in the abundance of the litter-dwelling organisms once the litter decomposed. As a whole, native habitat seems to support a larger, more stable litter-dwelling community over the course of a growing season.


Assuntos
Artrópodes , Árvores , Animais , Ecossistema , Florestas , Espécies Introduzidas , Folhas de Planta
14.
J Phycol ; 56(6): 1481-1492, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32557584

RESUMO

A high proportion of the kelp Laminaria hyperborea production is exported from kelp forests following seasonal storms or natural annual old blade loss. Transport of drifting kelp fragments can lead to temporary accumulations in benthic subtidal habitats. We investigated the degradation processes of L. hyperborea in a low subtidal sandy bottom ecosystem by setting up a 6-month cage experiment to simulate accumulations of kelp fragments on the seafloor. We monitored temporal changes in biomass, nutritional quality (C:N ratio), respiration, quantum efficiency of photosystem II (Fv /Fm ), bacterial colonization, and chemical defense concentrations. Biomass decomposition started after 2 weeks and followed a classic negative exponential pattern, leading to 50% degradation after 8 weeks. The degradation process seemed to reach a critical step after 11 weeks, with an increase in respiration rate and phlorotannin concentration in the tissues. These results likely reflect an increase in bacterial activity and a weakening of the kelp cell wall. After 25 weeks of degradation, only 16% of the initial biomass persisted, but the remaining large fragments looked intact. Furthermore, photosystems were still responding to light stimuli, indicating that photosynthesis persisted over time. Reproductive tissues appeared on some fragments after 20 weeks of degradation, showing a capacity to maintain the reproductive function. Our results indicate that L. hyperborea fragments degrade slowly. As they maintain major physiological functions (photosynthesis, reproduction, etc.) and accumulate on adjacent ecosystems, they may play a long-term ecological role in coastal ecosystem dynamics.


Assuntos
Kelp , Laminaria , Bactérias , Biomassa , Ecossistema
15.
Mycorrhiza ; 30(5): 567-576, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32535694

RESUMO

Orchid mycorrhizal fungi (OMF) are critical for seed germination and maintaining natural populations of orchids, yet the degree of specificity of most orchids to their mycorrhizal associates remains unknown. Many orchids are at risk of extinction, whether generalists or specialists, but orchid species of narrow fungal specificity are arguably under increased threat due to their requirement for specific fungal symbionts. This study characterises the fungi associated with Aerangis ellisii, a lithophytic orchid from a site in the Central Highlands of Madagascar. Culturable OMF isolated from spontaneous protocorms of this species from the wild were used for seed germination. In vitro germination and seedling development of A. ellisii were achieved with fungi derived from A. ellisii and an isolate from a different Aerangis species 30 km away. The significance of these findings and their importance to conservation strategies for this species and other Aerangis spp. is discussed. These results have important implications for the conservation of A. ellisii populations in Madagascar.


Assuntos
Micorrizas , Orchidaceae , Germinação , Madagáscar , Sementes , Simbiose
16.
Proc Biol Sci ; 286(1915): 20192046, 2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31744442

RESUMO

The tropicalization of temperate marine ecosystems can lead to increased herbivory rates, reducing the standing stock of seaweeds and potentially causing increases in detritus production. However, long-term studies analysing these processes associated with the persistence of tropical herbivores in temperate reefs are lacking. We assessed the seasonal variation in abundances, macrophyte consumption, feeding modes and defecation rates of the range-extending tropical rabbitfish Siganus fuscescens and the temperate silver drummer Kyphosus sydneyanus and herring cale Olisthops cyanomelas on tropicalized reefs of Western Australia. Rabbitfish overwintered in temperate reefs, consumed more kelp and other macrophytes in all feeding modes, and defecated more during both summer and winter than the temperate herbivores. Herbivory and defecation increased with rabbitfish abundance, but this was dependent on temperature, with higher rates attained by big schools during summer and lower rates in winter. Still, rabbitfish surpassed temperate herbivores, leading to a fivefold acceleration in the transformation of macrophyte standing stock to detritus, a function usually attributed to sea urchins in kelp forests. Our results suggest that further warming and tropicalization will not only increase primary consumption and affect the habitat structure of temperate reefs but also increase detritus production, with the potential to modify energy pathways.


Assuntos
Recifes de Corais , Defecação , Comportamento Alimentar , Peixes/fisiologia , Cadeia Alimentar , Aquecimento Global , Animais , Mudança Climática , Perciformes/fisiologia , Dinâmica Populacional , Estações do Ano , Austrália Ocidental
17.
Glob Chang Biol ; 25(12): 4165-4178, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31535452

RESUMO

Anthropogenic stressors can alter the structure and functioning of infaunal communities, which are key drivers of the carbon cycle in marine soft sediments. Nonetheless, the compounded effects of anthropogenic stressors on carbon fluxes in soft benthic systems remain largely unknown. Here, we investigated the cumulative effects of ocean acidification (OA) and hypoxia on the organic carbon fate in marine sediments, through a mesocosm experiment. Isotopically labelled macroalgal detritus (13 C) was used as a tracer to assess carbon incorporation in faunal tissue and in sediments under different experimental conditions. In addition, labelled macroalgae (13 C), previously exposed to elevated CO2 , were also used to assess the organic carbon uptake by fauna and sediments, when both sources and consumers were exposed to elevated CO2 . At elevated CO2 , infauna increased the uptake of carbon, likely as compensatory response to the higher energetic costs faced under adverse environmental conditions. By contrast, there was no increase in carbon uptake by fauna exposed to both stressors in combination, indicating that even a short-term hypoxic event may weaken the ability of marine invertebrates to withstand elevated CO2 conditions. In addition, both hypoxia and elevated CO2 increased organic carbon burial in the sediment, potentially affecting sediment biogeochemical processes. Since hypoxia and OA are predicted to increase in the face of climate change, our results suggest that local reduction of hypoxic events may mitigate the impacts of global climate change on marine soft-sediment systems.


Assuntos
Dióxido de Carbono , Água do Mar , Carbono , Ciclo do Carbono , Sedimentos Geológicos , Humanos , Concentração de Íons de Hidrogênio , Hipóxia
18.
J Anim Ecol ; 88(8): 1215-1225, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31063222

RESUMO

Invasive species research often focuses on direct effects of invasion on native ecosystems and less so on complex effects such as those influencing host-parasite interactions. However, invaders could have important effects on native host-parasite dynamics. Where infectious stages are ubiquitous and native host-pathogen specificity is strong, invasive less-competent hosts may reduce the pool of infectious stages, effectively reducing native host-parasite encounter rate. Alternatively, invasive species could alter transmission via changes in native species abundance. Biotic and abiotic environmental factors can also impact disease dynamics by altering host or parasite condition. However, little is known about potential interactive effects of invasion and environmental context on native species disease dynamics. Moreover, experimental examinations of the mechanisms driving dilution effects are limited, but serve to provide tests of predictions leading to diversity-disease relationships. Using field and laboratory experiments, we tested competing hypotheses that an invasive species reduces the prevalence of a native parasite in its host by removing infectious propagules from the environment or by reducing native host abundance. In addition, we evaluated the role of detritus quantity as a resource base in mediating effects of the invasive species. Native parasite prevalence was reduced when the invasive species was present. Prevalence was also higher in high detritus habitats, although this effect was lost when the invasive species was present. The invasive species significantly reduced infectious propagules from the aquatic habitats. Presence of the invasive species had no effect on the native species abundance; thus, the reduction in parasitism was not due to changes in host density but through a reduction in infectious propagule encounters. We conclude that an invasive species can facilitate a native species by reducing parasite prevalence via a dilution effect and that these effects can be modified by resource level. Reductions in parasitism may have ripple effects throughout the community, altering the strength of competitive interactions, predation rates or coinfection with other pathogens. We advocate considering potential positive effects of invasive species on recipient communities, in addition to effects of invasions on host-parasite interactions to gain a broader understanding of the complex consequences of invasion.


Assuntos
Culicidae , Parasitos , Animais , Ecossistema , Interações Hospedeiro-Parasita , Espécies Introduzidas , Prevalência
19.
Parasitology ; 146(13): 1665-1672, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31362793

RESUMO

Host condition depends in large part on the quality and quantity of available food and heavily influences the outcome of parasite infection. Although parasite fitness traits such as growth rate and size may depend on host condition, whether host food quality or quantity is more important to parasite fitness and within-host interactions is poorly understood. We provided individual mosquito hosts with a standard dose of a gregarine parasite and reared mosquitoes on two food types of different quality and two quantities. We measured host size, total parasite count and area, and average size of parasites within each treatment. Food quality significantly influenced the number of parasites in a host; hosts fed a low-quality diet were infected with more parasites than those provided a high-quality diet. In addition, we found evidence of within-host competition; there was a negative relationship between parasite size and count though this relationship was dependent on host food quality. Host food quantity significantly affected total parasite area and parasite size; lower food quantity resulted in smaller parasites and reduced overall parasite area inside the host. Thus both food quality and quantity have the potential to influence parasite fitness and population dynamics.


Assuntos
Aedes/fisiologia , Aedes/parasitologia , Fenômenos Fisiológicos da Nutrição Animal , Apicomplexa/fisiologia , Interações Hospedeiro-Parasita , Carga Parasitária , Animais , Apicomplexa/crescimento & desenvolvimento , Comportamento Competitivo , Modelos Teóricos
20.
Ecology ; 99(2): 347-359, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29266195

RESUMO

Ecological stoichiometry theory (EST) is a key framework for predicting how variation in N:P supply ratios influences biological processes, at molecular to ecosystem scales, by altering the availability of C, N, and P relative to organismal requirements. We tested EST predictions by fertilizing five forest streams at different dissolved molar N:P ratios (2, 8, 16, 32, 128) for two years and tracking responses of macroinvertebrate consumers to the resulting steep experimental gradient in basal resource stoichiometry (leaf litter %N, %P, and N:P). Nitrogen and P content of leaf litter, the dominant basal resource, increased in all five streams following enrichment, with steepest responses in litter %P and N:P ratio. Additionally, increases in primary consumer biomass and production occurred in all five streams following N and P enrichment (averages across all streams: biomass by 1.2×, production by 1.6×). Patterns of both biomass and production were best predicted by leaf litter N:P and %P and were unrelated to leaf litter %N. Primary consumer production increased most in streams where decreases in leaf litter N:P were largest. Macroinvertebrate predator biomass and production were also strongly positively related to litter %P, providing robust experimental evidence for the primacy of P limitation at multiple trophic levels in these ecosystems. However, production of predatory macroinvertebrates was not related directly to primary consumer production, suggesting the importance of additional controls for macroinvertebrates at upper trophic positions. Our results reveal potential drivers of animal production in detritus-based ecosystems, including the relative importance of resource quality vs. quantity. Our study also sheds light on the more general impacts of variation in N:P supply ratio on nutrient-poor ecosystems, providing strong empirical support for predictions that nutrient enrichment increases food web productivity whenever large elemental imbalances between basal resources and consumer demand are reduced.


Assuntos
Ecossistema , Rios , Animais , Biomassa , Cadeia Alimentar , Nitrogênio
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa