Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell Commun Signal ; 22(1): 259, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715050

RESUMO

Ubiquitination and deubiquitination are important forms of posttranslational modification that govern protein homeostasis. Deubiquitinating enzymes (DUBs), a protein superfamily consisting of more than 100 members, deconjugate ubiquitin chains from client proteins to regulate cellular homeostasis. However, the dysregulation of DUBs is reportedly associated with several diseases, including cancer. The tumor microenvironment (TME) is a highly complex entity comprising diverse noncancerous cells (e.g., immune cells and stromal cells) and the extracellular matrix (ECM). Since TME heterogeneity is closely related to tumorigenesis and immune evasion, targeting TME components has recently been considered an attractive therapeutic strategy for restoring antitumor immunity. Emerging studies have revealed the involvement of DUBs in immune modulation within the TME, including the regulation of immune checkpoints and immunocyte infiltration and function, which renders DUBs promising for potent cancer immunotherapy. Nevertheless, the roles of DUBs in the crosstalk between tumors and their surrounding components have not been comprehensively reviewed. In this review, we discuss the involvement of DUBs in the dynamic interplay between tumors, immune cells, and stromal cells and illustrate how dysregulated DUBs facilitate immune evasion and promote tumor progression. We also summarize potential small molecules that target DUBs to alleviate immunosuppression and suppress tumorigenesis. Finally, we discuss the prospects and challenges regarding the targeting of DUBs in cancer immunotherapeutics and several urgent problems that warrant further investigation.


Assuntos
Enzimas Desubiquitinantes , Microambiente Tumoral , Humanos , Enzimas Desubiquitinantes/metabolismo , Evasão da Resposta Imune , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/enzimologia , Neoplasias/metabolismo , Evasão Tumoral , Microambiente Tumoral/imunologia , Ubiquitinação
2.
Biochem Eng J ; 1512019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32831622

RESUMO

Deubiquitinating enzymes (DUBs) regulate the removal of the polyubiquitin chain from proteins targeted for degradation. Current approaches to quantify DUB activity are limited to test tube-based assays that incorporate enzymes or cell lysates, but not intact cells. The goal of this work was to develop a novel peptide-based biosensor of DUB activity that is cell permeable, protease-resilient, fluorescent, and specific to DUBs. The biosensor consists of an N-terminal ß-hairpin motif that acts as both a 'protectide' to increase intracellular stability and a cell penetrating peptide (CPP) to facilitate the uptake into intact cells. The ß-hairpin was conjugated to a C-terminal substrate consisting of the last four amino acids in ubiquitin (LRGG) to facilitate DUB mediated cleavage of a C-terminal fluorophore (AFC). The kinetics of the peptide reporter were characterized in cell lysates by dose response and inhibition enzymology studies. Inhibition studies with an established DUB inhibitor (PR-619) confirmed the specificity of both reporters to DUBs. Fluorometry and fluorescent microscopy experiments followed by mathematical modeling established the capability of the biosensor to measure DUB activity in intact cells while maintaining cellular integrity. The novel reporter introduced here is compatible with high-throughput single cell analysis platforms such as FACS and droplet microfluidics facilitating direct quantification of DUB activity in single intact cells with direct application in point-of-care cancer diagnostics and drug discovery.

3.
bioRxiv ; 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38853827

RESUMO

The ubiquitin-like protein ISG15 (interferon-stimulated gene 15) regulates the host response to bacterial and viral infections through its conjugation to proteins (ISGylation) following interferon production. ISGylation is antagonized by the highly specific cysteine protease USP18, which is the major deISGylating enzyme. However, mechanisms underlying USP18's extraordinary specificity towards ISG15 remains elusive. Here, we show that USP18 interacts with its paralog USP41, whose catalytic domain shares 97% identity with USP18. However, USP41 does not act as a deISGylase, which led us to perform a comparative analysis to decipher the basis for this difference, revealing molecular determinants of USP18's specificity towards ISG15. We found that USP18 C-terminus, as well as a conserved Leucine at position 198, are essential for its enzymatic activity and likely act as functional surfaces based on AlphaFold predictions. Finally, we propose that USP41 antagonizes conjugation of the understudied ubiquitin-like protein FAT10 (HLA-F adjacent transcript 10) from substrates in a catalytic-independent manner. Altogether, our results offer new insights into USP18's specificity towards ISG15, while identifying USP41 as a negative regulator of FAT10 conjugation.

4.
FEBS Lett ; 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39108012

RESUMO

Hematopoietic stem cells (HSC) maintain blood production throughout life. Nevertheless, HSC functionality deteriorates upon physiological aging leading to the increased prevalence of haematological diseases and hematopoietic malignancies in the elderly. Deubiquitinating enzymes (DUBs) by reverting protein ubiquitination ensure proper proteostasis, a key process in HSC maintenance and fitness.

5.
Cells ; 12(16)2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37626927

RESUMO

Protein turnover, a highly regulated process governed by the ubiquitin-proteasome system (UPS), is essential for maintaining cellular homeostasis. Dysregulation of the UPS has been implicated in various diseases, including viral infections and cancer, making the proteins in the UPS attractive targets for therapeutic intervention. However, the functional and structural redundancies of UPS enzymes present challenges in identifying precise drug targets and achieving target selectivity. Consequently, only 26S proteasome inhibitors have successfully advanced to clinical use thus far. To overcome these obstacles, engineered peptides and proteins, particularly engineered ubiquitin, have emerged as promising alternatives. In this review, we examine the impact of engineered ubiquitin on UPS and non-UPS proteins, as well as on viral enzymes. Furthermore, we explore their potential to guide the development of small molecules targeting novel surfaces, thereby expanding the range of druggable targets.


Assuntos
Complexo de Endopeptidases do Proteassoma , Ubiquitina , Citoplasma , Proteólise , Inibidores de Proteassoma
6.
Front Immunol ; 14: 1303072, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38077335

RESUMO

Deubiquitinating enzymes (DUBs) are emerging as key factors for the infection of human cells by pathogens such as bacteria and parasites. In this review, we discuss the most recent studies on the role of deubiquitinase activity in exploiting and manipulating ubiquitin (Ub)-dependent host processes during infection. The studies discussed here highlight the importance of DUB host-pathogen research and underscore the therapeutic potential of inhibiting pathogen-specific DUB activity to prevent infectious diseases.


Assuntos
Parasitos , Animais , Humanos , Enzimas Desubiquitinantes , Ubiquitina , Bactérias
7.
Front Cell Infect Microbiol ; 13: 1217383, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37360529

RESUMO

Ever since its emergence in 2019, COVID-19 has rapidly disseminated worldwide, engendering a pervasive pandemic that has profoundly impacted healthcare systems and the socio-economic milieu. A plethora of studies has been conducted targeting its pathogenic virus, SARS-CoV-2, to find ways to combat COVID-19. The ubiquitin-proteasome system (UPS) is widely recognized as a crucial mechanism that regulates human biological activities by maintaining protein homeostasis. Within the UPS, the ubiquitination and deubiquitination, two reversible modifications, of substrate proteins have been extensively studied and implicated in the pathogenesis of SARS-CoV-2. The regulation of E3 ubiquitin ligases and DUBs(Deubiquitinating enzymes), which are key enzymes involved in the two modification processes, determines the fate of substrate proteins. Proteins associated with the pathogenesis of SARS-CoV-2 may be retained, degraded, or even activated, thus affecting the ultimate outcome of the confrontation between SARS-CoV-2 and the host. In other words, the clash between SARS-CoV-2 and the host can be viewed as a battle for dominance over E3 ubiquitin ligases and DUBs, from the standpoint of ubiquitin modification regulation. This review primarily aims to clarify the mechanisms by which the virus utilizes host E3 ubiquitin ligases and DUBs, along with its own viral proteins that have similar enzyme activities, to facilitate invasion, replication, escape, and inflammation. We believe that gaining a better understanding of the role of E3 ubiquitin ligases and DUBs in COVID-19 can offer novel and valuable insights for developing antiviral therapies.


Assuntos
COVID-19 , Vírus , Humanos , Ubiquitina-Proteína Ligases/metabolismo , SARS-CoV-2/metabolismo , Ubiquitinação , Ubiquitina/metabolismo , Proteínas/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Enzimas Desubiquitinantes/metabolismo
8.
Arch Pharm Res ; 46(7): 573-597, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37541992

RESUMO

As the ubiquitin-proteasome system (UPS) regulates almost every biological process, the dysregulation or aberrant expression of the UPS components causes many pathological disorders, including cancers. To find a novel target for anticancer therapy, the UPS has been an active area of research since the FDA's first approval of a proteasome inhibitor bortezomib in 2003 for treating multiple myeloma (MM). Here, we summarize newly described UPS components, including E3 ubiquitin ligases, deubiquitinases (DUBs), and immunoproteasome, whose malfunction leads to tumorigenesis and whose inhibitors have been investigated in clinical trials as anticancer therapy since 2020. We explain the mechanism and effects of several inhibitors in depth to better comprehend the advantages of targeting UPS components for cancer treatment. In addition, we describe attempts to overcome resistance and limited efficacy of some launched proteasome inhibitors, as well as an emerging PROTAC-based tool targeting UPS components for anticancer therapy.


Assuntos
Mieloma Múltiplo , Neoplasias , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Ubiquitina/uso terapêutico , Inibidores de Proteassoma/farmacologia , Inibidores de Proteassoma/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Bortezomib/farmacologia , Bortezomib/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico
9.
Genes (Basel) ; 13(5)2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35627217

RESUMO

Deubiquitination is a major form of post-translational protein modification involved in the regulation of protein homeostasis and various cellular processes. Deubiquitinating enzymes (DUBs), comprising about five subfamily members, are key players in deubiquitination. USP10 is a USP-family DUB featuring the classic USP domain, which performs deubiquitination. Emerging evidence has demonstrated that USP10 is a double-edged sword in human cancers. However, the precise molecular mechanisms underlying its different effects in tumorigenesis remain elusive. A possible reason is dependence on the cell context. In this review, we summarize the downstream substrates and upstream regulators of USP10 as well as its dual role as an oncogene and tumor suppressor in various human cancers. Furthermore, we summarize multiple pharmacological USP10 inhibitors, including small-molecule inhibitors, such as spautin-1, and traditional Chinese medicines. Taken together, the development of specific and efficient USP10 inhibitors based on USP10's oncogenic role and for different cancer types could be a promising therapeutic strategy.


Assuntos
Neoplasias , Ubiquitina Tiolesterase , Carcinogênese , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Ubiquitina Tiolesterase/genética
10.
Microorganisms ; 9(3)2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33808578

RESUMO

Ubiquitination of proteins, like phosphorylation and acetylation, is an important regulatory aspect influencing numerous and various cell processes, such as immune response signaling and autophagy. The study of ubiquitination has become essential to learning about host-pathogen interactions, and a better understanding of the detailed mechanisms through which pathogens affect ubiquitination processes in host cell will contribute to vaccine development and effective treatment of diseases. Pathogenic bacteria (e.g., Salmonella enterica, Legionella pneumophila and Shigella flexneri) encode many effector proteins, such as deubiquitinating enzymes (DUBs), targeting the host ubiquitin machinery and thus disrupting pertinent ubiquitin-dependent anti-bacterial response. We focus here upon the host ubiquitination system as an integral unit, its interconnection with the regulation of inflammation and autophagy, and primarily while examining pathogens manipulating the host ubiquitination system. Many bacterial effector proteins have already been described as being translocated into the host cell, where they directly regulate host defense processes. Due to their importance in pathogenic bacteria progression within the host, they are regarded as virulence factors essential for bacterial evasion. However, in some cases (e.g., Francisella tularensis) the host ubiquitination system is influenced by bacterial infection, although the responsible bacterial effectors are still unknown.

11.
Pharmaceuticals (Basel) ; 14(9)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34577547

RESUMO

Ubiquitination represents a post-translational modification (PTM) essential for the maintenance of cellular homeostasis. Ubiquitination is involved in the regulation of protein function, localization and turnover through the attachment of a ubiquitin molecule(s) to a target protein. Ubiquitination can be reversed through the action of deubiquitinating enzymes (DUBs). The DUB enzymes have the ability to remove the mono- or poly-ubiquitination signals and are involved in the maturation, recycling, editing and rearrangement of ubiquitin(s). Ubiquitin-specific proteases (USPs) are the biggest family of DUBs, responsible for numerous cellular functions through interactions with different cellular targets. Over the past few years, several studies have focused on the role of USPs in carcinogenesis, which has led to an increasing development of therapies based on USP inhibitors. In this review, we intend to describe different cellular functions, such as the cell cycle, DNA damage repair, chromatin remodeling and several signaling pathways, in which USPs are involved in the development or progression of cancer. In addition, we describe existing therapies that target the inhibition of USPs.

12.
Cancers (Basel) ; 13(15)2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34359655

RESUMO

Myeloid neoplasms encompass a very heterogeneous family of diseases characterized by the failure of the molecular mechanisms that ensure a balanced equilibrium between hematopoietic stem cells (HSCs) self-renewal and the proper production of differentiated cells. The origin of the driver mutations leading to preleukemia can be traced back to HSC/progenitor cells. Many properties typical to normal HSCs are exploited by leukemic stem cells (LSCs) to their advantage, leading to the emergence of a clonal population that can eventually progress to leukemia with variable latency and evolution. In fact, different subclones might in turn develop from the original malignant clone through accumulation of additional mutations, increasing their competitive fitness. This process ultimately leads to a complex cancer architecture where a mosaic of cellular clones-each carrying a unique set of mutations-coexists. The repertoire of genes whose mutations contribute to the progression toward leukemogenesis is broad. It encompasses genes involved in different cellular processes, including transcriptional regulation, epigenetics (DNA and histones modifications), DNA damage signaling and repair, chromosome segregation and replication (cohesin complex), RNA splicing, and signal transduction. Among these many players, transcription factors, RNA splicing proteins, and deubiquitinating enzymes are emerging as potential targets for therapeutic intervention.

13.
J Zhejiang Univ Sci B ; 22(1): 63-72, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33448188

RESUMO

DNA is the hereditary material in humans and almost all other organisms. It is essential for maintaining accurate transmission of genetic information. In the life cycle, DNA replication, cell division, or genome damage, including that caused by endogenous and exogenous agents, may cause DNA aberrations. Of all forms of DNA damage, DNA double-strand breaks (DSBs) are the most serious. If the repair function is defective, DNA damage may cause gene mutation, genome instability, and cell chromosome loss, which in turn can even lead to tumorigenesis. DNA damage can be repaired through multiple mechanisms. Homologous recombination (HR) and non-homologous end joining (NHEJ) are the two main repair mechanisms for DNA DSBs. Increasing amounts of evidence reveal that protein modifications play an essential role in DNA damage repair. Protein deubiquitination is a vital post-translational modification which removes ubiquitin molecules or polyubiquitinated chains from substrates in order to reverse the ubiquitination reaction. This review discusses the role of deubiquitinating enzymes (DUBs) in repairing DNA DSBs. Exploring the molecular mechanisms of DUB regulation in DSB repair will provide new insights to combat human diseases and develop novel therapeutic approaches.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA/fisiologia , Enzimas Desubiquitinantes/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Quinase 1 do Ponto de Checagem/metabolismo , Quinase do Ponto de Checagem 2/metabolismo , Reparo do DNA por Junção de Extremidades/fisiologia , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Recombinação Homóloga , Humanos , Ubiquitina-Proteína Ligases/metabolismo
14.
Arch Pharm Res ; 43(11): 1144-1161, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33165832

RESUMO

The ubiquitin-proteasome system (UPS) plays an important role in the cellular processes for protein quality control and homeostasis. Dysregulation of the UPS has been implicated in numerous diseases, including cancer. Indeed, components of UPS are frequently mutated or abnormally expressed in various cancers. Since Bortezomib, a proteasome inhibitor, received FDA approval for the treatment of multiple myeloma and mantle cell lymphoma, increasing numbers of researchers have been seeking drugs targeting the UPS as a cancer therapeutic strategy. Here, we introduce the essential component of UPS, including ubiquitinating enzymes, deubiquitinating enzymes and 26S proteasome, and we summarize their targets and mechanisms that are crucial for tumorigenesis. In addition, we briefly discuss some UPS inhibitors, which are currently in clinical trials as cancer therapeutics.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/uso terapêutico , Animais , Antineoplásicos/efeitos adversos , Humanos , Terapia de Alvo Molecular , Neoplasias/enzimologia , Neoplasias/patologia , Inibidores de Proteassoma/efeitos adversos , Proteólise , Ubiquitinação
15.
Methods Enzymol ; 625: 339-350, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31455535

RESUMO

Ubiquitination is a reversible posttranslational modification that regulates nearly all cellular processes. The ubiquitin polypeptide is conjugated via its C-terminus to amine groups of lysine residues on target protein. Additionally, ubiquitins moieties can be conjugated in tandem to the initial ubiquitin via any of its internal lysine residues or N terminal methionine residue, resulting in the formation of polyubiquitin chains with distinct biophysical properties and biological functions. Elucidating the types of polyubiquitin chains present in proteins is essential for understanding their function and mechanism of regulation. Traditionally, ubiqutin modifications have been elucidated by exogenously co-expressing proteins of interest with epitope-tagged ubiquitins mutated in specific lysine residues. However, this strategy is prone experimental artifacts. In this protocol, we describe how to elucidate endogenous ubiquitin modifications. This procedure combines TUBE (Tandem Ubiquitin Binding Entity)-based isolation of ubiquitin conjugates, digestion with linkage specific deubiquitinases and immunoblotting. This procedure is very robust can be applied to profile types and architectural organization polyubiquitin chains present on the any proteins of interest and has been instrumental in elucidating ubiquitin modifications in NOD2 signaling in our recent study (Panda & Gekara, 2018).


Assuntos
Poliubiquitina/metabolismo , Proteínas/química , Proteínas/metabolismo , Animais , Bioensaio/métodos , Enzimas Desubiquitinantes/metabolismo , Humanos , Ligação Proteica , Processamento de Proteína Pós-Traducional
16.
Artigo em Inglês | WPRIM | ID: wpr-880709

RESUMO

DNA is the hereditary material in humans and almost all other organisms. It is essential for maintaining accurate transmission of genetic information. In the life cycle, DNA replication, cell division, or genome damage, including that caused by endogenous and exogenous agents, may cause DNA aberrations. Of all forms of DNA damage, DNA double-strand breaks (DSBs) are the most serious. If the repair function is defective, DNA damage may cause gene mutation, genome instability, and cell chromosome loss, which in turn can even lead to tumorigenesis. DNA damage can be repaired through multiple mechanisms. Homologous recombination (HR) and non-homologous end joining (NHEJ) are the two main repair mechanisms for DNA DSBs. Increasing amounts of evidence reveal that protein modifications play an essential role in DNA damage repair. Protein deubiquitination is a vital post-translational modification which removes ubiquitin molecules or polyubiquitinated chains from substrates in order to reverse the ubiquitination reaction. This review discusses the role of deubiquitinating enzymes (DUBs) in repairing DNA DSBs. Exploring the molecular mechanisms of DUB regulation in DSB repair will provide new insights to combat human diseases and develop novel therapeutic approaches.

17.
Data Brief ; 6: 556-61, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26909367

RESUMO

The data described here provide genome-wide expression profiles of murine primitive hematopoietic stem and progenitor cells (LSK) and of B cell populations, obtained by high throughput sequencing. Cells are derived from wild-type mice and from mice deficient for the ubiquitin-specific protease 3 (USP3; Usp3Δ/Δ). Modification of histone proteins by ubiquitin plays a crucial role in the cellular response to DNA damage (DDR) (Jackson and Durocher, 2013) [1]. USP3 is a histone H2A deubiquitinating enzyme (DUB) that regulates ubiquitin-dependent DDR in response to DNA double-strand breaks (Nicassio et al., 2007; Doil et al., 2008) [2], [3]. Deletion of USP3 in mice increases the incidence of spontaneous tumors and affects hematopoiesis [4]. In particular, Usp3-knockout mice show progressive loss of B and T cells and decreased functional potential of hematopoietic stem cells (HSCs) during aging. USP3-deficient cells, including HSCs, display enhanced histone ubiquitination, accumulate spontaneous DNA damage and are hypersensitive to ionizing radiation (Lancini et al., 2014) [4]. To address whether USP3 loss leads to deregulation of specific molecular pathways relevant to HSC homeostasis and/or B cell development, we have employed the RNA-sequencing technology and investigated transcriptional differences between wild-type and Usp3Δ/Δ LSK, naïve B cells or in vitro activated B cells. The data relate to the research article "Tight regulation of ubiquitin-mediated DNA damage response by USP3 preserves the functional integrity of hematopoietic stem cells" (Lancini et al., 2014) [4]. The RNA-sequencing and analysis data sets have been deposited in NCBI׳s Gene Expression Omnibus (Edgar et al., 2002) [5] and are accessible through GEO Series accession number GSE58495 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE58495). With this article, we present validation of the RNA-seq data set through quantitative real-time PCR and comparative analysis.

18.
Front Genet ; 6: 282, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26442100

RESUMO

Ubiquitination is a reversible protein modification broadly implicated in cellular functions. Signaling processes mediated by ubiquitin (ub) are crucial for the cellular response to DNA double-strand breaks (DSBs), one of the most dangerous types of DNA lesions. In particular, the DSB response critically relies on active ubiquitination by the RNF8 and RNF168 ub ligases at the chromatin, which is essential for proper DSB signaling and repair. How this pathway is fine-tuned and what the functional consequences are of its deregulation for genome integrity and tissue homeostasis are subject of intense investigation. One important regulatory mechanism is by reversal of substrate ubiquitination through the activity of specific deubiquitinating enzymes (DUBs), as supported by the implication of a growing number of DUBs in DNA damage response processes. Here, we discuss the current knowledge of how ub-mediated signaling at DSBs is controlled by DUBs, with main focus on DUBs targeting histone H2A and on their recent implication in stem cell biology and cancer.

19.
G3 (Bethesda) ; 4(8): 1529-38, 2014 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-24948786

RESUMO

Ubiquitination and deubiquitination of proteins are reciprocal events involved in many cellular processes, including the cell cycle. During mitosis, the metaphase to anaphase transition is regulated by the ubiquitin ligase activity of the anaphase-promoting complex/cyclosome (APC/C). Although the E3 ubiquitin ligase function of the APC/C has been well characterized, it is not clear whether deubiquitinating enzymes (DUBs) play a role in reversing APC/C substrate ubiquitination. Here we performed a genetic screen to determine what DUB, if any, antagonizes the function of the APC/C in the fission yeast Schizosaccharomyces pombe. We found that deletion of ubp8, encoding the Spt-Ada-Gcn5-Acetyl transferase (SAGA) complex associated DUB, suppressed temperature-sensitive phenotypes of APC/C mutants cut9-665, lid1-6, cut4-533, and slp1-362. Our analysis revealed that Ubp8 antagonizes APC/C function in a mechanism independent of the spindle assembly checkpoint and proteasome activity. Notably, suppression of APC/C mutants was linked to loss of Ubp8 catalytic activity and required histone H2B ubiquitination. On the basis of these data, we conclude that Ubp8 antagonizes APC/C function indirectly by modulating H2B ubiquitination status.


Assuntos
Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Endopeptidases/metabolismo , Histonas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Ciclossomo-Complexo Promotor de Anáfase/genética , Endopeptidases/genética , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa