Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proteomics ; 24(1-2): e2300100, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37287406

RESUMO

Increased throughput in proteomic experiments can improve accessibility of proteomic platforms, reduce costs, and facilitate new approaches in systems biology and biomedical research. Here we propose combination of analytical flow rate chromatography with ion mobility separation of peptide ions, data-independent acquisition, and data analysis with the DIA-NN software suite, to achieve high-quality proteomic experiments from limited sample amounts, at a throughput of up to 400 samples per day. For instance, when benchmarking our workflow using a 500-µL/min flow rate and 3-min chromatographic gradients, we report the quantification of 5211 proteins from 2 µg of a mammalian cell-line standard at high quantitative accuracy and precision. We further used this platform to analyze blood plasma samples from a cohort of COVID-19 inpatients, using a 3-min chromatographic gradient and alternating column regeneration on a dual pump system. The method delivered a comprehensive view of the COVID-19 plasma proteome, allowing classification of the patients according to disease severity and revealing plasma biomarker candidates.


Assuntos
COVID-19 , Proteômica , Animais , Humanos , Proteômica/métodos , Peptídeos/análise , Proteoma/análise , Cromatografia Líquida/métodos , Mamíferos/metabolismo
2.
J Proteome Res ; 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38315831

RESUMO

The extracellular matrix (ECM) is a complex assembly of proteins that provide interstitial scaffolding and elastic recoil for human lungs. The pulmonary extracellular matrix is increasingly recognized as an independent bioactive entity, by creating biochemical and mechanical signals that influence disease pathogenesis, making it an attractive therapeutic target. However, the pulmonary ECM proteome ("matrisome") remains challenging to analyze by mass spectrometry due to its inherent biophysical properties and relatively low abundance. Here, we introduce a strategy designed for rapid and efficient characterization of the human pulmonary ECM using the photocleavable surfactant Azo. We coupled this approach with trapped ion mobility MS with diaPASEF to maximize the depth of matrisome coverage. Using this strategy, we identify nearly 400 unique matrisome proteins with excellent reproducibility that are known to be important in lung biology, including key core matrisome proteins.

3.
J Proteome Res ; 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38498986

RESUMO

Caspase-9 is traditionally considered the initiator caspase of the intrinsic apoptotic pathway. In the past decade, however, other functions beyond initiation/execution of cell death have been described including cell type-dependent regulation of proliferation, differentiation/maturation, mitochondrial, and endosomal/lysosomal homeostasis. As previous studies revealed nonapoptotic functions of caspases in osteogenesis and bone homeostasis, this study was performed to identify proteins and pathways deregulated by knockout of caspase-9 in mouse MC3T3-E1 osteoblasts. Data-independent acquisition-parallel accumulation serial fragmentation (diaPASEF) proteomics was used to compare protein profiles of control and caspase-9 knockout cells. A total of 7669 protein groups were quantified, and 283 upregulated/141 downregulated protein groups were associated with the caspase-9 knockout phenotype. The deregulated proteins were mainly enriched for those associated with cell migration and motility and DNA replication/repair. Altered migration was confirmed in MC3T3-E1 cells with the genetic and pharmacological inhibition of caspase-9. ABHD2, an established regulator of cell migration, was identified as a possible substrate of caspase-9. We conclude that caspase-9 acts as a modulator of osteoblastic MC3T3-E1 cell migration and, therefore, may be involved in bone remodeling and fracture repair.

4.
Clin Proteomics ; 21(1): 22, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38475715

RESUMO

Plasma proteomics holds immense potential for clinical research and biomarker discovery, serving as a non-invasive "liquid biopsy" for tissue sampling. Mass spectrometry (MS)-based proteomics, thanks to improvement in speed and robustness, emerges as an ideal technology for exploring the plasma proteome for its unbiased and highly specific protein identification and quantification. Despite its potential, plasma proteomics is still a challenge due to the vast dynamic range of protein abundance, hindering the detection of less abundant proteins. Different approaches can help overcome this challenge. Conventional depletion methods face limitations in cost, throughput, accuracy, and off-target depletion. Nanoparticle-based enrichment shows promise in compressing dynamic range, but cost remains a constraint. Enrichment strategies for extracellular vesicles (EVs) can enhance plasma proteome coverage dramatically, but current methods are still too laborious for large series. Neat plasma remains popular for its cost-effectiveness, time efficiency, and low volume requirement. We used a test set of 33 plasma samples for all evaluations. Samples were digested using S-Trap and analyzed on Evosep One and nanoElute coupled to a timsTOF Pro using different elution gradients and ion mobility ranges. Data were mainly analyzed using library-free searches using DIA-NN. This study explores ways to improve proteome coverage in neat plasma both in MS data acquisition and MS data analysis. We demonstrate the value of sampling smaller hydrophilic peptides, increasing chromatographic separation, and using library-free searches. Additionally, we introduce the EV boost approach, that leverages on the extracellular vesicle fraction to enhance protein identification in neat plasma samples. Globally, our optimized analysis workflow allows the quantification of over 1000 proteins in neat plasma with a 24SPD throughput. We believe that these considerations can be of help independently of the LC-MS platform used.

5.
Int J Mol Sci ; 25(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38542311

RESUMO

Blast-induced neurotrauma (BINT) is a pressing concern for veterans and civilians exposed to explosive devices. Affected personnel may have increased risk for long-term cognitive decline and developing tauopathies including Alzheimer's disease-related disorders (ADRD) or frontal-temporal dementia (FTD). The goal of this study was to identify the effect of BINT on molecular networks and their modulation by mutant tau in transgenic (Tg) mice overexpressing the human tau P301L mutation (rTg4510) linked to FTD or non-carriers. The primary focus was on the phosphoproteome because of the prominent role of hyperphosphorylation in neurological disorders. Discrimination learning was assessed following injury in the subsequent 6 weeks, using the automated home-cage monitoring CognitionWall platform. At 40 days post injury, label-free phosphoproteomics was used to evaluate molecular networks in the frontal cortex of mice. Utilizing a weighted peptide co-expression network analysis (WpCNA) approach, we identified phosphopeptide networks tied to associative learning and mossy-fiber pathways and those which predicted learning outcomes. Phosphorylation levels in these networks were inversely related to learning and linked to synaptic dysfunction, cognitive decline, and dementia including Atp6v1a and Itsn1. Low-intensity blast (LIB) selectively increased pSer262tau in rTg4510, a site implicated in initiating tauopathy. Additionally, individual and group level analyses identified the Arhgap33 phosphopeptide as an indicator of BINT-induced cognitive impairment predominantly in rTg4510 mice. This study unveils novel interactions between ADRD genetic susceptibility, BINT, and cognitive decline, thus identifying dysregulated pathways as targets in potential precision-medicine focused therapeutics to alleviate the disease burden among those affected by BINT.


Assuntos
Demência Frontotemporal , Tauopatias , Camundongos , Humanos , Animais , Proteínas tau/genética , Proteínas tau/metabolismo , Demência Frontotemporal/genética , Fosfopeptídeos , Tauopatias/metabolismo , Camundongos Transgênicos , Cognição , Modelos Animais de Doenças
6.
Proteomics ; 23(1): e2200204, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36408942

RESUMO

Exosomes derived from mesenchymal stem cells (MSCs) have been used for cancer treatment, however, an in-depth analysis of the exosomal proteomes is lacking. In this manuscript, we use the diaPASEF (parallel accumulation serial fragmentation combined with the data-independent acquisition) method to quantify exosomes derived from human umbilical cord mesenchymal stem cells (UCMSCs) and rat bone marrow stem cells (BMSCs), resulting in identification of 4200 human proteins and 5362 rat proteins. Comparison of human exosomal proteins and total cellular proteins reveals that some proteins exist in the exosomes exclusively that can be served as potential markers for exosomes. Quantitative proteomic analysis of exosomes from different passages of BMSCs shows that the proteins involved in TGF-ß signaling pathway are regulated in abundance, which could be markers for the therapeutic ability of BMSC exosomes. Collectively, the data presented by this study can be a resource for further study of exosome research.


Assuntos
Exossomos , Células-Tronco Mesenquimais , MicroRNAs , Ratos , Humanos , Animais , Exossomos/metabolismo , Proteômica , Células-Tronco Mesenquimais/metabolismo , Cordão Umbilical/metabolismo , Células da Medula Óssea/metabolismo , MicroRNAs/metabolismo
7.
Proteomics ; 23(7-8): e2200038, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36876969

RESUMO

Data independent acquisition (DIA/SWATH) MS is a primary strategy in quantitative proteomics. diaPASEF is a recent adaptation using trapped ion mobility spectrometry (TIMS) to improve selectivity/sensitivity. Complex DIA spectra are typically analyzed with reference to spectral libraries. The best-established method for generating libraries uses offline fractionation to increase depth of coverage. More recently strategies for spectral library generation based on gas phase fractionation (GPF), where a representative sample is injected serially using narrow DIA windows that cover different mass ranges of the complete precursor space, have been introduced that performed comparably to deep offline fractionation-based libraries. We investigated whether an analogous GPF-based approach that accounts for the ion mobility (IM) dimension is useful for the analysis of diaPASEF data. We developed a rapid library generation approach using an IM-GPF acquisition scheme in the m/z versus 1/K0 space requiring seven injections of a representative sample and compared this with libraries generated by direct deconvolution-based analysis of diaPASEF data or by deep offline fractionation. We found that library generation by IM-GPF outperformed direct library generation from diaPASEF and had performance approaching that of the deep library. This establishes the IM-GPF scheme as a pragmatic approach to rapid library generation for analysis of diaPASEF data.


Assuntos
Biblioteca de Peptídeos , Proteômica , Proteômica/métodos , Fracionamento Químico/métodos , Proteoma/análise
8.
Proteomics ; 23(10): e2200507, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36752121

RESUMO

A quadrupole time-of-flight mass spectrometer coupled with a trapped ion mobility spectrometry (timsTOF) operated in parallel accumulation-serial fragmentation (PASEF) mode has recently emerged as a platform capable of providing four-dimensional (4D) features comprising of elution time, collision cross section (CCS), mass-to-charge ratio, and intensity of peptides. The PASEF mode provides ∼100% ion sampling efficiency both in data-dependent acquisition (DDA) and data-independent acquisition (DIA) modes without sacrificing sensitivity. In addition, targeted measurements using PASEF integrated parallel reaction monitoring (PRM) mode have also been described. However, only limited number of studies have used timsTOF for analysis of clinical samples. Although Orbitrap mass spectrometers have been used for biomarker discovery from cerebrospinal fluid (CSF) in a variety of neurological diseases, these Orbitrap-derived datasets cannot readily be applied for driving experiments on timsTOF mass spectrometers. We generated a catalog of peptides and proteins in human CSF in DDA mode on a timsTOF mass spectrometer and used these data to build a spectral library. This strategy allowed us to use elution times and ion mobility values from the spectral library to design PRM experiments for quantifying previously discovered biomarkers from CSF samples in Alzheimer's disease. When the same samples were analyzed using a DIA approach combined with a spectral library search, a higher number of proteins were identified than in a library-free approach. Overall, we have established a spectral library of CSF as a resource and demonstrated its utility for PRM and DIA studies, which should facilitate studies of neurological disorders.


Assuntos
Espectrometria de Mobilidade Iônica , Proteômica , Humanos , Proteômica/métodos , Peptídeos/análise , Espectrometria de Massas/métodos , Proteínas
9.
Proteomics ; 23(11): e2200408, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36960851

RESUMO

Caspase-9 is the major apical caspase responsible for triggering the intrinsic apoptotic pathway. Our previous study indicated that specific inhibition of caspase-9 caused microscopically evident alterations in appearance of the primary chondrogenic cultures which cannot be explained by decrease in apoptosis. To describe a complex molecular background of this effect, proteomics analysis of control and caspase-9 inhibitor-treated chondrogenic cultures were performed. Proteins were extracted, identified and quantified using LC-MS in both data dependent and data independent acquisition (DIA) mode. While directDIA analysis of diaPASEF data obtained using timsTOF Pro LC-MS system revealed 7849 protein groups (Q-value <0.01), a parallel analysis of iTRAQ-2DLC-MS3 and conventional DIA-MS data identified only 5146 and 4098 protein groups, respectively, showing diaPASEF a superior method for the study. The detailed analysis of diaPASEF data disclosed 236/551 significantly down-/up-regulated protein groups after caspase-9 inhibition, respectively (|log2FC|>0.58, Q value <0.05). Classification of downregulated proteins revealed changes in extracellular matrix organization, collagen metabolism, and muscle system processes. Moreover, deregulations suggest a switch from glycolytic to lipid based metabolism in the inhibited cells. No essential changes were found in the proteins involved in apoptosis. The data indicate new non-apoptotic participation of caspases in chondrocyte homeostasis with potential applications in cartilage pathophysiology.


Assuntos
Apoptose , Condrócitos , Caspase 9/metabolismo , Caspase 9/farmacologia , Condrócitos/metabolismo , Transdução de Sinais , Caspases/metabolismo , Caspases/farmacologia
10.
J Proteome Res ; 22(7): 2232-2245, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37256709

RESUMO

Phosphoproteomics and ubiquitinomics data-independent acquisition (DIA) mass spectrometry (MS) data is typically analyzed by using a data-dependent acquisition (DDA) spectral library. The performance of various library-free strategies for analyzing phosphoproteomics and ubiquitinomics DIA MS data has not been evaluated. In this study, we systematically compare four commonly used DDA library-free approaches including Spectronaut's directDIA, DIA-Umpire, DIA-MSFragger, and in silico-predicted library for analysis of phosphoproteomics SWATH, DIA, and diaPASEF data as well as ubiquitinomics diaPASEF data. Spectronaut's directDIA shows the highest sensitivity for phosphopeptide detection not only in synthetic phosphopeptide samples but also in phosphoproteomics SWATH-MS and DIA data from real biological samples, when compared to the other three library-free strategies. For phosphoproteomics diaPASEF data, Spectronaut's directDIA and the in silico-predicted library based on DIA-NN identify almost the same number of phosphopeptides as a project-specific DDA spectral library. However, only about 30% of the total phosphopeptides are commonly identified, suggesting that the library-free strategies for phospho-diaPASEF data need further improvement in terms of sensitivity. For ubiquitinomics diaPASEF data, the in silico-predicted library performs the best among the four workflows and detects ∼50% more K-GG peptides than a project-specific DDA spectral library. Our results demonstrate that Spectronaut's directDIA is suitable for the analysis of phosphoproteomics SWATH-MS and DIA MS data, while the in silico-predicted library based on DIA-NN shows substantial advantages for ubiquitinomics diaPASEF MS data.


Assuntos
Fosfopeptídeos , Proteômica , Proteômica/métodos , Espectrometria de Massas/métodos , Proteoma/análise
11.
J Proteome Res ; 22(7): 2525-2537, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37294184

RESUMO

By far the largest contribution to ion detectability in liquid chromatography-driven mass spectrometry-based proteomics is the efficient generation of peptide molecular ions by the electrospray source. To maximize the transfer of peptides from the liquid to gaseous phase and allow molecular ions to enter the mass spectrometer at microspray flow rates, an efficient electrospray process is required. Here we describe the superior performance of newly design vacuum insulated probe heated electrospray ionization (VIP-HESI) source coupled to a Bruker timsTOF PRO mass spectrometer operated in microspray mode. VIP-HESI significantly improves chromatography signals in comparison to electrospray ionization (ESI) and nanospray ionization using the captivespray (CS) source and provides increased protein detection with higher quantitative precision, enhancing reproducibility of sample injection amounts. Protein quantitation of human K562 lymphoblast samples displayed excellent chromatographic retention time reproducibility (<10% coefficient of variation (CV)) with no signal degradation over extended periods of time, and a mouse plasma proteome analysis identified 12% more plasma protein groups allowing large-scale analysis to proceed with confidence (1,267 proteins at 0.4% CV). We show that the Slice-PASEF VIP-HESI mode is sensitive in identifying low amounts of peptide without losing quantitative precision. We demonstrate that VIP-HESI coupled with microflow rate chromatography achieves a higher depth of coverage and run-to-run reproducibility for a broad range of proteomic applications. Data and spectral libraries are available via ProteomeXchange (PXD040497).


Assuntos
Proteômica , Espectrometria de Massas por Ionização por Electrospray , Humanos , Animais , Camundongos , Espectrometria de Massas por Ionização por Electrospray/métodos , Reprodutibilidade dos Testes , Proteômica/métodos , Vácuo , Cromatografia Líquida/métodos , Peptídeos/análise , Íons , Proteoma/análise
12.
Small ; 19(52): e2302280, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37649234

RESUMO

Glioblastoma (GBM) is the most common primary malignant brain cancer in adults with a dismal prognosis. Temozolomide (TMZ) is the first-in-line chemotherapeutic; however, resistance is frequent and multifactorial. While many molecular and genetic factors have been linked to TMZ resistance, the role of the solid tumor morphology and the tumor microenvironment, particularly the blood-brain barrier (BBB), is unknown. Here, the authors investigate these using a complex in vitro model for GBM and its surrounding BBB. The model recapitulates important clinical features such as a dense tumor core with tumor cells that invade along the perivascular space; and a perfusable BBB with a physiological permeability and morphology that is altered in the presence of a tumor spheroid. It is demonstrated that TMZ sensitivity decreases with increasing cancer cell spatial organization, and that the BBB can contribute to TMZ resistance. Proteomic analysis with next-generation low volume sample workflows of these cultured microtissues revealed potential clinically relevant proteins involved in tumor aggressiveness and TMZ resistance, demonstrating the utility of complex in vitro models for interrogating the tumor microenvironment and therapy validation.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Barreira Hematoencefálica/metabolismo , Microambiente Tumoral , Proteômica , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Int J Mol Sci ; 24(14)2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37511514

RESUMO

Idiopathic membranous nephropathy (IMN) is a pathologically defined disorder of the glomerulus, primarily responsible for nephrotic syndromes (NS) in nondiabetic adults. The underlying molecular mechanisms are still not completely clarified. To explore possible molecular and functional signatures, an optimised mass spectrometry (MS) method based on next-generation data-independent acquisition combined with ion-mobility was applied to serum of patients affected by IMN (n = 15) or by other glomerulopathies (PN) (n = 15). The statistical comparison highlighted a panel of 57 de-regulated proteins with a significant increase in lipoprotein-related proteins (APOC1, APOB, APOA1, APOL1 and LCAT) and a substantial quantitative alteration of key serpins (including A4, D1, A7, A6, F2, F1 and 1) possibly associated with IMN or NS and podocyte stress. A critical dysregulation in metabolisms of lipids (e.g., VLDL assembly and clearance) likely to be related to known hyperlipidemia in IMN, along with involvement of non-classical complement pathways and a putative enrolment of ficolin-2 in sustaining the activation of the lectin-mediated complement system have been pinpointed. Moreover, mannose receptor CD206 (MRC1-down in IMN) and biotinidase (BTD-up in IMN) are able alone to accurately distinguish IMN vs. PN. To conclude, our work provides key proteomic insights into the IMN complexity, opening the way to an efficient stratification of MN patients.


Assuntos
Glomerulonefrite Membranosa , Síndrome Nefrótica , Adulto , Humanos , Proteoma , Proteômica , Glomérulos Renais/metabolismo , Apolipoproteína L1
14.
Proteomics ; 22(17): e2200125, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35708973

RESUMO

Traditional data-independent acquisition (DIA) workflows employ off-column fractionation with data-dependent acquisition (DDA) to generate spectral libraries for data extraction. Recent advances have led to the establishment of library-independent approaches for DIA analyses. The selection of a DIA workflow may affect the outcome of plasma proteomics studies. Here, we establish a gas-phase fractionation (GPF) workflow to create DIA libraries for DIA with parallel accumulation and serial fragmentation (diaPASEF). This workflow along with three other workflows, fractionated DDA libraries, fractionated DIA libraries, and predicted spectra libraries, were evaluated on 20 plasma samples from nonsmall cell lung cancer patients with low or high levels of IL-6. We sought to optimize protein identification and total experiment time. The novel GPF workflow for diaPASEF outperformed the traditional ddaPASEF workflow in the number of identified and quantified proteins. A library-independent workflow based on predicted spectra identified and quantified the most proteins in our experiment at the cost of computational power. Overall, the choice of DIA library workflow seemed to have a limited effect on the overall outcome of a plasma proteomics experiment, but it can affect the number of proteins identified and the total experiment time.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Proteoma/metabolismo , Proteômica , Fluxo de Trabalho
15.
J Proteome Res ; 21(2): 507-518, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-34969243

RESUMO

Targeted analysis of data-independent acquisition (DIA) data needs a spectral library, which is generated by data-dependent acquisition (DDA) experiments or directly from DIA data. A comparison of the DDA library and DIA library in analyzing DIA data has been reported. However, the effects of different spectral libraries on the analysis of diaPASEF data have not been investigated. Here, we generate different spectral libraries with varying proteome coverage to analyze parallel accumulation-serial fragmentation (diaPASEF) data. Besides, we also employ the library-free strategy. The library, constructed by extensive fractionation DDA experiments, produces the highest numbers of precursors and proteins but with a high percentage of missing values. The library-free strategy identifies 10-20% fewer proteins than the library-based method but with a high degree of data completeness. A further study shows that the library-free strategy, although it identifies fewer proteins than the library-based method, leads to similar biological conclusions as the library-based method.


Assuntos
Proteoma , Proteômica , Biblioteca de Peptídeos , Proteômica/métodos
16.
J Proteome Res ; 21(8): 2036-2044, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35876248

RESUMO

Trapped ion-mobility spectrometry (TIMS) was used to fractionate ions in the gas phase based on their ion mobility (V s/cm2), followed by parallel accumulation-serial fragmentation (PASEF) using a quadrupole time-of-flight instrument to determine the effect on the depth of proteome coverage. TIMS fractionation (up to four gas-phase fractions) coupled to data-dependent acquisition (DDA)-PASEF resulted in the detection of ∼7000 proteins and over 70,000 peptides overall from 200 ng of human (HeLa) cell lysate per injection using a commercial 25 cm ultra high performance liquid chromatography (UHPLC) column with a 90 min gradient. This result corresponded to ∼19 and 30% increases in protein and peptide identifications, respectively, when compared to a default, single-range TIMS DDA-PASEF analysis. Quantitation precision was not affected by TIMS fractionation as demonstrated by the average and median coefficient of variation values that were less than 4% upon label-free quantitation of technical replicates. TIMS fractionation was utilized to generate a DDA-based spectral library for downstream data-independent acquisition (DIA) analysis of lower sample input using a shorter LC gradient. The TIMS-fractionated library, consisting of over 7600 proteins and 82,000 peptides, enabled the identification of ∼4000 and 6600 proteins from 10 and 200 ng of human (HeLa) cell lysate input, respectively, with a 20 min gradient, single-shot DIA analysis. Data are available in ProteomeXchange: identifier PXD033129.


Assuntos
Proteoma , Proteômica , Humanos , Espectrometria de Mobilidade Iônica , Íons , Peptídeos/análise , Proteoma/análise , Proteômica/métodos
17.
Int J Mol Sci ; 23(15)2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35955870

RESUMO

The high mortality, the presence of an initial asymptomatic stage and the fact that diagnosis in early stages reduces mortality justify the implementation of screening programs in the populations at risk of lung cancer. It is imperative to develop less aggressive methods that can complement existing diagnosis technologies. In this study, we aimed to identify lung cancer protein biomarkers and pathways affected in sputum samples, using the recently developed diaPASEF mass spectrometry (MS) acquisition mode. The sputum proteome of lung cancer cases and controls was analyzed through nano-HPLC-MS using the diaPASEF mode. For functional analysis, the results from differential expression analysis were further analyzed in the STRING platform, and feature selection was performed using sparse partial least squares discriminant analysis (sPLS-DA). Our results showed an activation of inflammation, with an alteration of pathways and processes related to acute-phase, complement, and immune responses. The resulting sPLS-DA model separated between case and control groups with high levels of sensitivity and specificity. In conclusion, we showed how new-generation proteomics can be used to detect potential biomarkers in sputum samples, and ultimately to discriminate patients from controls and even to help to differentiate between different cancer subtypes.


Assuntos
Neoplasias Pulmonares , Proteômica , Biomarcadores Tumorais/metabolismo , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Escarro/química
18.
Int J Mol Sci ; 23(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36499490

RESUMO

Accumulation of senescent dermal fibroblasts drives skin aging. The reactivation of proliferation is one strategy to modulate cell senescence. Recently, we reported the exact chemical composition of the hydrophilic extract of Oenothera biennis cell cultures (ObHEx) and we showed its skin anti-aging properties. The aim of this work is to assess its biological effect specifically on cell senescence. ObHEx action has been evaluated on normal human dermal fibroblasts subjected to stress-induced premature senescence (SIPS) through an ultra-deep proteomic analysis, leading to the most global senescence-associated proteome so far. Mass spectrometry data show that the treatment with ObHEx re-establishes levels of crucial mitotic proteins, strongly downregulated in senescent cells. To validate our proteomics findings, we proved that ObHEx can, in part, restore the activity of 'senescence-associated-ß-galactosidase', the most common hallmark of senescent cells. Furthermore, to assess if the upregulation of mitotic protein levels translates into a cell cycle re-entry, FACS experiments have been carried out, demonstrating a small but significative reactivation of senescent cell proliferation by ObHEx. In conclusion, the deep senescence-associated global proteome profiling published here provides a panel of hundreds of proteins deregulated by SIPS that can be used by the community to further understand senescence and the effect of new potential modulators. Moreover, proteomics analysis pointed to a specific promitotic effect of ObHEx on senescent cells. Thus, we suggest ObHEx as a powerful adjuvant against senescence associated with skin aging.


Assuntos
Oenothera biennis , Proteômica , Humanos , Fibroblastos/metabolismo , Senescência Celular , Pele , Células Cultivadas
19.
J Proteome Res ; 20(8): 4165-4175, 2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34292740

RESUMO

Since the recent outbreak of COVID-19, there have been intense efforts to understand viral pathogenesis and host immune response to combat SARS-CoV-2. It has become evident that different host alterations can be identified in SARS-CoV-2 infection based on whether infected cells, animal models or clinical samples are studied. Although nasopharyngeal swabs are routinely collected for SARS-CoV-2 detection by RT-PCR testing, host alterations in the nasopharynx at the proteomic level have not been systematically investigated. Thus, we sought to characterize the host response through global proteome profiling of nasopharyngeal swab specimens. A mass spectrometer combining trapped ion mobility spectrometry (TIMS) and high-resolution QTOF mass spectrometer with parallel accumulation-serial fragmentation (PASEF) was deployed for unbiased proteome profiling. First, deep proteome profiling of pooled nasopharyngeal swab samples was performed in the PASEF enabled DDA mode, which identified 7723 proteins that were then used to generate a spectral library. This approach provided peptide level evidence of five missing proteins for which MS/MS spectrum and mobilograms were validated with synthetic peptides. Subsequently, quantitative proteomic profiling was carried out for 90 individual nasopharyngeal swab samples (45 positive and 45 negative) in DIA combined with PASEF, termed as diaPASEF mode, which resulted in a total of 5023 protein identifications. Of these, 577 proteins were found to be upregulated in SARS-CoV-2 positive samples. Functional analysis of these upregulated proteins revealed alterations in several biological processes including innate immune response, viral protein assembly, and exocytosis. To the best of our knowledge, this study is the first to deploy diaPASEF for quantitative proteomic profiling of clinical samples and shows the feasibility of adopting such an approach to understand mechanisms and pathways altered in diseases.


Assuntos
COVID-19 , Proteoma , Humanos , Nasofaringe , Proteômica , SARS-CoV-2 , Manejo de Espécimes , Espectrometria de Massas em Tandem
20.
J Proteome Res ; 20(1): 1096-1102, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33091296

RESUMO

Targeted analysis of data-independent acquisition (DIA) mass spectrometry data requires elegant software tools and strict statistical control. OpenSWATH-PyProphet-TRIC is a widely used DIA data analysis workflow. The OpenSWATH-PyProphet-TRIC workflow is typically executed by running command lines. Here, we present QuantPipe, which is a graphic interface software tool based on the OpenSWATH-PyProphet-TRIC workflow. In addition to OpenSWATH-PyProphet-TRIC functions, QuantPipe can convert the spectral library to the assay library and output peptides and protein intensities. We demonstrated that QuantPipe can be used to analyze SWATH-MS data from TripleTOF 5600 and TripleTOF 6600, phospho-SWATH-MS data, DIA data from Orbitrap instrument, and diaPASEF data from TimsTOF Pro instrument. The executable files, user manual, and source code of QuantPipe are freely available at https://github.com/tachengxmu/QuantPipe/releases.


Assuntos
Análise de Dados , Proteômica , Espectrometria de Massas , Software , Fluxo de Trabalho
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa