Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Mol Syst Biol ; 20(4): 362-373, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38355920

RESUMO

Unraveling the genetic sources of gene expression variation is essential to better understand the origins of phenotypic diversity in natural populations. Genome-wide association studies identified thousands of variants involved in gene expression variation, however, variants detected only explain part of the heritability. In fact, variants such as low-frequency and structural variants (SVs) are poorly captured in association studies. To assess the impact of these variants on gene expression variation, we explored a half-diallel panel composed of 323 hybrids originated from pairwise crosses of 26 natural Saccharomyces cerevisiae isolates. Using short- and long-read sequencing strategies, we established an exhaustive catalog of single nucleotide polymorphisms (SNPs) and SVs for this panel. Combining this dataset with the transcriptomes of all hybrids, we comprehensively mapped SNPs and SVs associated with gene expression variation. While SVs impact gene expression variation, SNPs exhibit a higher effect size with an overrepresentation of low-frequency variants compared to common ones. These results reinforce the importance of dissecting the heritability of complex traits with a comprehensive catalog of genetic variants at the population level.


Assuntos
Estudo de Associação Genômica Ampla , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Expressão Gênica , Polimorfismo de Nucleotídeo Único/genética , Variação Genética
2.
Plant J ; 112(6): 1525-1542, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36353749

RESUMO

Linking genotype with phenotype is a fundamental goal in biology and requires robust data for both. Recent advances in plant-genome sequencing have expedited comparisons among multiple-related individuals. The abundance of structural genomic within-species variation that has been discovered indicates that a single reference genome cannot represent the complete sequence diversity of a species, leading to the expansion of the pan-genome concept. For high-resolution forward genetics, this unprecedented access to genomic variation should be paralleled and integrated with phenotypic characterization of genetic diversity. We developed a multi-parental framework for trait dissection in melon (Cucumis melo), leveraging a novel pan-genome constructed for this highly variable cucurbit crop. A core subset of 25 diverse founders (MelonCore25), consisting of 24 accessions from the two widely cultivated subspecies of C. melo, encompassing 12 horticultural groups, and 1 feral accession was sequenced using a combination of short- and long-read technologies, and their genomes were assembled de novo. The construction of this melon pan-genome exposed substantial variation in genome size and structure, including detection of ~300 000 structural variants and ~9 million SNPs. A half-diallel derived set of 300 F2 populations, representing all possible MelonCore25 parental combinations, was constructed as a framework for trait dissection through integration with the pan-genome. We demonstrate the potential of this unified framework for genetic analysis of various melon traits, including rind color intensity and pattern, fruit sugar content, and resistance to fungal diseases. We anticipate that utilization of this integrated resource will enhance genetic dissection of important traits and accelerate melon breeding.


Assuntos
Cucumis melo , Cucurbitaceae , Cucumis melo/genética , Cucurbitaceae/genética , Melhoramento Vegetal , Mapeamento Cromossômico , Fenótipo
3.
BMC Plant Biol ; 23(1): 539, 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37923986

RESUMO

Combining ability is referred to as the hybridization value of the parental genotypes involved in the crossing to develop hybrids. The best parents are selected through combining ability methods and subsequently used to produce high yielding and resistant hybrids. Thus, the objectives of this study were to (i) understand the nature and action of genes controlling water deficit tolerance, and (ii) identify superior genotypes from the genetic breadth provided by hybridization in cowpea. Twenty-four genotypes were subjected to normal irrigation and water deficit condition to examine combining ability, genotypic and phenotypic correlations for traits directly related to water deficit (proline and chlorophylls), grain yield and yield components. The results showed the presence of the action of additive and non-additive genes under both water regime conditions. However, there was the predominance of the action of additive genes for most of the traits studied under both conditions. The parents KVX61-1, IT06K242-3, IT07K-211-1-8, Kpodjiguèguè, IT99K-573-1-1, Tawa and IT97K-206-1-1 were observed to be good general combiners for proline content, chlorophyll content and traits associated with yield, while KVX61-1 × KVX396-18, IT06K242-3 × KVX396-18, IT07K-211-1-1 × KVX396-18, Kpodjiguèguè x KVX396-18, KVX61 -1 × IT97K-206-1-1, IT06K242-3 × IT97K-206-1-1, IT07K-211-1-1 × IT97K-206-1-1 and Kpodjiguèguè x IT97K-206-1-1 were proven to be the best specific combiners for traits directly related to water deficit tolerance and yield. It should be noted that number of days to pod maturity, pod length, number of pods per plant and weight of hundred seeds were highly heritable traits in this study.


Assuntos
Vigna , Vigna/genética , Genótipo , Fenótipo , Água , Prolina
4.
Proc Biol Sci ; 290(1996): 20230375, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37040806

RESUMO

Fertility is a major component of fitness but its genetic architecture remains poorly understood. Using a full diallel cross of 50 Drosophila Genetic Reference Panel inbred lines with whole genome sequences, we found substantial genetic variation in fertility largely attributable to females. We mapped genes associated with variation in female fertility by genome-wide association analysis of common variants in the fly genome. Validation of candidate genes by RNAi knockdown confirmed the role of the dopamine 2-like receptor (Dop2R) in promoting egg laying. We replicated the Dop2R effect in an independently collected productivity dataset and showed that the effect of the Dop2R variant was mediated in part by regulatory gene expression variation. This study demonstrates the strong potential of genome-wide association analysis in this diverse panel of inbred strains and subsequent functional analyses for understanding the genetic architecture of fitness traits.


Assuntos
Drosophila melanogaster , Estudo de Associação Genômica Ampla , Animais , Feminino , Drosophila melanogaster/fisiologia , Drosophila/genética , Fertilidade , Variação Genética
5.
Fish Physiol Biochem ; 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38085448

RESUMO

In this study the pattern of color of inheritance based on Mendel's laws on the Clarias gariepinus strain was evaluated, to ascertain the different traits of albino, normally pigmented, and a combination of both traits that could be passed across from the parent stocks to the progenies. Since albinism is caused by a series of genetic abnormalities resulting in the reduction of melanin production, partial diallel cross between normally pigmented and albino fish was carried out using two females (albino and normal pigmented brood fish) weighing 2.5 kg and 3 kg, respectively; they were used in crossing two males (albino and normal pigmented brood fish) that weighed 1.5 kg and 1 kg, respectively. They were paired with normal pigmented (♂Np × â™€Np) and albino C. gariepinus (♂Ae × â™€Ae) fish to produce a pure strain of normally pigmented and albino strain, respectively. To produce the hybrids, they were paired (♂Np × â™€Ae) and (♂Ae × â™€Np), respectively. The outcomes of this study showed that crossbreeding between normally pigmented females and albino males produced all normally pigmented F1 generation, while some quantity of albino (36.67%) at crossing male albino to normally pigmented females were produced. However, the pure strains breed true (100%). Each hybrid exhibits heterosis after 56 days of rearing compared to the normal strain that was crossed, although the normally pigmented fish gives a better SGR. Hence, there is a need to investigate if sex is linked with albinism.

6.
J Anat ; 241(2): 211-229, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35357006

RESUMO

Brain and skull tissues interact through molecular signalling and mechanical forces during head development, leading to a strong correlation between the neurocranium and the external brain surface. Therefore, when brain tissue is unavailable, neurocranial endocasts are often used to approximate brain size and shape. Evolutionary changes in brain morphology may have resulted in secondary changes to neurocranial morphology, but the developmental and genetic processes underlying this relationship are not well understood. Using automated phenotyping methods, we quantified the genetic basis of endocast variation across large genetically varied populations of laboratory mice in two ways: (1) to determine the contributions of various genetic factors to neurocranial form and (2) to help clarify whether a neurocranial variation is based on genetic variation that primarily impacts bone development or on genetic variation that primarily impacts brain development, leading to secondary changes in bone morphology. Our results indicate that endocast size is highly heritable and is primarily determined by additive genetic factors. In addition, a non-additive inbreeding effect led to founder strains with lower neurocranial size, but relatively large brains compared to skull size; suggesting stronger canalization of brain size and/or a general allometric effect. Within an outbred sample of mice, we identified a locus on mouse chromosome 1 that is significantly associated with variation in several positively correlated endocast size measures. Because the protein-coding genes at this locus have been previously associated with brain development and not with bone development, we propose that genetic variation at this locus leads primarily to variation in brain volume that secondarily leads to changes in neurocranial globularity. We identify a strain-specific missense mutation within Akt3 that is a strong causal candidate for this genetic effect. Whilst it is not appropriate to generalize our hypothesis for this single locus to all other loci that also contribute to the complex trait of neurocranial skull morphology, our results further reveal the genetic basis of neurocranial variation and highlight the importance of the mechanical influence of brain growth in determining skull morphology.


Assuntos
Encéfalo , Crânio , Animais , Evolução Biológica , Encéfalo/anatomia & histologia , Cabeça , Camundongos , Crânio/anatomia & histologia
7.
Am J Bot ; 109(11): 1847-1860, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36350645

RESUMO

PREMISE: In many species, seed size influences individual fitness, but its heritability is low, impeding its evolution. In heterogeneous environments, even if heritability of seed size is low, genetic variation in phenotypic plasticity for seed size may provide the opportunity for selection, but this possibility has rarely been investigated in wild species. The evolutionary trajectory of seed size depends on whether additive, maternal, or non-additive genetic variance dominates; moreover, the expression of any of these sources of variance may be environment-dependent, reflecting genetic variation in plasticity. In this study, we examined these sources of variation in seed size and their response to drought in Dithyrea californica. METHODS: We used a diallel design to estimate variance components for seed size in three greenhouse-raised populations sampled from California and northern Mexico. We replicated diallels in two watering treatments to examine genetic parameters and genotype × environment interactions affecting seed size. We estimated general (GCA) and specific (SCA) combining ability, reciprocal effects (RGCA and RSCA), and their interactions with water availability, and we sought evidence that sexual conflict influences seed size. RESULTS: Norms of reaction revealed genetic variation in plasticity for seed size in each population. Seed size in D. californica is determined by the combination of watering treatment, GCA and RGCA; parental identity and water availability do not consistently affect seed size, and we detected no evidence for sexual conflict. CONCLUSIONS: Multiple sources of genetic variation in phenotypic plasticity for seed size have the potential to influence its evolutionary trajectory in heterogenous environments.


Assuntos
Algoritmos , Interação Gene-Ambiente , Adaptação Fisiológica , Sementes/genética , Genótipo , Água
8.
J Exp Bot ; 72(15): 5407-5425, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34013312

RESUMO

Heterosis occurs when the F1s outperform their parental lines for a trait. Reciprocal hybrids are obtained by changing the cross direction of parental genotypes. Both biological phenomena could affect the external and internal attributes of fleshy fruits. This work aimed to detect reciprocal effects and heterosis in tomato (Solanum lycopersicum) fruit quality traits and metabolite content. Twelve agronomic traits and 28 metabolites identified and estimated by 1H-NMR were evaluated in five cultivars grown in two environments. Given that the genotype component was more important than the phenotype, the traits were evaluated following a full diallel mating design among those cultivars, in a greenhouse. Hybrids showed a higher phenotypic diversity than parental lines. Interestingly, the metabolites, mainly amino acids, displayed more reciprocal effects and heterosis. Agronomic traits were more influenced by general combining ability (GCA) and metabolites by specific combining ability (SCA). Furthermore, the genetic distance between parental lines was not causally related to the occurrence of reciprocal effects or heterosis. Hybrids with heterosis and a high content of metabolites linked to tomato flavour and nutritious components were obtained. Our results highlight the impact of selecting a cultivar as male or female in a cross to enhance the variability of fruit attributes through hybrids as well as the possibility to exploit heterosis for fruit composition.


Assuntos
Vigor Híbrido , Solanum lycopersicum , Cruzamentos Genéticos , Frutas/genética , Vigor Híbrido/genética , Solanum lycopersicum/genética , Fenótipo
9.
J Exp Bot ; 72(18): 6205-6218, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-33993257

RESUMO

Heterosis, the superiority of hybrids over their parents, is a major genetic force associated with plant fitness and crop yield enhancement. We investigated root-mediated yield heterosis in melons (Cucumis melo) by characterizing a common variety grafted onto 190 hybrid rootstocks, resulting from crossing 20 diverse inbreds in a diallel-mating scheme. Hybrid rootstocks improved yield by more than 40% compared with their parents, and the best hybrid yield outperformed the reference commercial variety by 65% under both optimal and minimal irrigation treatments. To characterize the genetics of underground heterosis we conducted whole genome re-sequencing of the 20 founder lines, and showed that parental genetic distance was no predictor for the level of heterosis. Through inference of the 190 hybrid genotypes from their parental genomes, followed by genome-wide association analysis, we mapped multiple quantitative trait loci for root-mediated yield. Yield enhancement of the four best-performing hybrid rootstocks was validated in multiple experiments with four different scion varieties. Our grafting approach is complementary to the common roots genetic approach that focuses mainly on variation in root system architecture, and is a step towards discovery of candidate genes involved in root function and yield enhancement.


Assuntos
Cucurbitaceae , Vigor Híbrido , Estudo de Associação Genômica Ampla , Genótipo , Vigor Híbrido/genética , Locos de Características Quantitativas/genética
10.
Ann Bot ; 127(6): 723-736, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33619532

RESUMO

BACKGROUND AND AIMS: Genetically controlled self-incompatibility (SI) mechanisms constrain selfing and thus have contributed to the evolutionary diversity of flowering plants. In homomorphic gametophytic SI (GSI) and homomorphic sporophytic SI (SSI), genetic control is usually by the single multi-allelic locus S. Both GSI and SSI prevent self pollen tubes reaching the ovary and so are pre-zygotic in action. In contrast, in taxa with late-acting self-incompatibility (LSI), rejection is often post-zygotic, since self pollen tubes grow to the ovary, where fertilization may occur prior to floral abscission. Alternatively, lack of self fruit set could be due to early-acting inbreeding depression (EID). The aim of our study was to investigate mechanisms underlying the lack of selfed fruit set in Handroanthus heptaphyllus in order to assess the likelihood of LSI versus EID. METHODS: We employed four full-sib diallels to study the genetic control of LSI in H. heptaphyllus using a precociously flowering variant. We also used fluorescence microscopy to study the incidence of ovule penetration by pollen tubes in pistils that abscised following pollination or initiated fruits. KEY RESULTS: All diallels showed reciprocally cross-incompatible full sibs (RCIs), reciprocally cross-compatible full sibs (RCCs) and non-reciprocally compatible full sibs (NRCs) in almost equal proportions. There was no significant difference between the incidences of ovule penetrations in abscised pistils following self- and cross-incompatible pollinations, but those in successful cross-pollinations were around 2-fold greater. CONCLUSIONS: A genetic model postulating a single S locus with four S alleles, one of which, in the maternal parent, is dominant to the other three, will produce RCI, RCC and NRC full sib situations each at 33 %, consistent with our diallel results. We favour this simple genetic control over an EID explanation since none of our pollinations, successful or unsuccessful, resulted in partial embryo development, as would be expected under a whole-genome EID effect.


Assuntos
Bignoniaceae , Depressão por Endogamia , Flores/genética , Óvulo Vegetal/genética , Polinização
11.
J Anim Breed Genet ; 138(4): 474-481, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33104266

RESUMO

In a diallel cross between four maternal lines of rabbits, the four maternal lines and the corresponding crossbred females (does) were evaluated concerning functional longevity, estimating their crossbreeding components. Sixteen genetic groups were produced by using four maternal lines of rabbit (A, V, H and LP (L)). The groups were distributed over 4 Spanish farms. In all farms, the V line was present as the reference group. A total of 7,211 does' longevity records were recorded. Using a Cox proportional hazard model of fixed effects, survival analysis was performed to study longevity analysing the hazard of death or culling. Does from lines A, H and V had similar risks of death or of being culled, and they were more susceptible compared with those from line L. The lowest hazard was associated with L line does. No significant differences were found between the average of all crosses and the V line except when comparing the V line to the cross between A and H lines, favouring the former (1.30 higher risk of replacement for AH animals). Significant differences between reciprocal crosses were observed between VH and HV, in favour of HV (0.72 of relative risk of replacement) and between LH and HL, in favour of HL (0.76 of relative risk). Line V had the highest risk due to the direct genetic effects, and these differences were significant with the lines H (1.40 of relative risk) and L (1.43 of relative risk). The differences in maternal genetic effects were small and not significant except between lines H and V in favour of V line (0.75 of relative risk). The estimated direct heterosis effects do not always follow the same trend but they showed the importance of the crossing between specialized lines to produce crossbred does for intensive meat rabbit production.


Assuntos
Longevidade , Animais , Cruzamentos Genéticos , Feminino , Vigor Híbrido , Hibridização Genética , Tamanho da Ninhada de Vivíparos , Gravidez , Coelhos , Análise de Sobrevida
12.
Proc Natl Acad Sci U S A ; 113(46): E7317-E7326, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27803326

RESUMO

The ubiquity of nonparental hybrid phenotypes, such as hybrid vigor and hybrid inferiority, has interested biologists for over a century and is of considerable agricultural importance. Although examples of both phenomena have been subject to intense investigation, no general model for the molecular basis of nonadditive genetic variance has emerged, and prediction of hybrid phenotypes from parental information continues to be a challenge. Here we explore the genetics of hybrid phenotype in 435 Arabidopsis thaliana individuals derived from intercrosses of 30 parents in a half diallel mating scheme. We find that nonadditive genetic effects are a major component of genetic variation in this population and that the genetic basis of hybrid phenotype can be mapped using genome-wide association (GWA) techniques. Significant loci together can explain as much as 20% of phenotypic variation in the surveyed population and include examples that have both classical dominant and overdominant effects. One candidate region inherited dominantly in the half diallel contains the gene for the MADS-box transcription factor AGAMOUS-LIKE 50 (AGL50), which we show directly to alter flowering time in the predicted manner. Our study not only illustrates the promise of GWA approaches to dissect the genetic architecture underpinning hybrid performance but also demonstrates the contribution of classical dominance to genetic variance.


Assuntos
Arabidopsis/genética , Vigor Híbrido/genética , Cruzamentos Genéticos , Variação Genética , Hibridização Genética , Fenótipo
13.
Int J Mol Sci ; 20(12)2019 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-31248080

RESUMO

Eggplant varieties rich in bioactive chlorogenic acid along with less browning are preferred by consumers. Therefore, genetics of fruit phenolics, fruit flesh colour, and browning related traits were studied in the genotypes of eggplant, comprising of nine cultivated varieties and one accession of eggplant's primary genepool wild relative Solanum insanum (INS2). These accessions were genotyped based on the 7335 polymorphic single-nucleotide polymorphisms (SNP) markers. After that, genotypes were crossed in half diallel fashion to produce 45 hybrids. The INS2 displayed the highest values for the total phenolics and chlorogenic acid content (CGA). For all of the biochemical traits studied, significant values of general and specific combining ability (GCA and SCA) effects were determined. The baker ratio estimates were high (>0.75) for all of the traits. Highly significant and positive heterosis (%) was determined for the dry matter, total phenolics, CGA, and area (%) of CGA content. The phenolics content of the fruit (total phenolics and CGA) was not significantly correlated with flesh colour and browning related traits. However, when the path coefficient analysis was performed considering the CGA as a dependent variable, it was determined that the flesh colour related traits most considerably affected the CGA. The genetic distance showed a diminutive correlation with the hybrid means, heterosis, and SCA values. Overall, this study provides important information regarding the underlying genetics of important biochemical traits of eggplant fruit.


Assuntos
Frutas/química , Frutas/genética , Estudos de Associação Genética , Fenóis/química , Pigmentação/genética , Característica Quantitativa Herdável , Solanum melongena/química , Solanum melongena/genética , Ácido Clorogênico/análise , Ácido Clorogênico/química , Evolução Molecular , Variação Genética , Hibridização Genética , Fenóis/análise , Compostos Fitoquímicos , Polimorfismo de Nucleotídeo Único
14.
BMC Genet ; 18(1): 1, 2017 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-28056775

RESUMO

BACKGROUND: As seed oil content (OC) is a key measure of rapeseed quality, better understanding the genetic basis of OC would greatly facilitate the breeding of high-oil cultivars. Here, we investigated the components of genetic effects and genotype × environment interactions (GE) that govern OC using a full diallel set of nine parents, which represented a wide range of the Chinese rapeseed cultivars and pure lines with various OCs. RESULTS: Our results from an embryo-cytoplasm-maternal (GoCGm) model for diploid seeds showed that OC was primarily determined by genetic effects (VG) and GE (VGE), which together accounted for 86.19% of the phenotypic variance (VP). GE (VGE) alone accounted for 51.68% of the total genetic variance, indicating the importance of GE interaction for OC. Furthermore, maternal variance explained 75.03% of the total genetic variance, embryo and cytoplasmic effects accounted for 21.02% and 3.95%, respectively. We also found that the OC of F1 seeds was mainly determined by maternal effect and slightly affected by xenia. Thus, the OC of rapeseed was simultaneously affected by various genetic components, including maternal, embryo, cytoplasm, xenia and GE effects. In addition, general combining ability (GCA), specific combining ability (SCA), and maternal variance had significant influence on OC. The lines H2 and H1 were good general combiners, suggesting that they would be the best parental candidates for OC improvement. Crosses H3 × M2 and H1 × M3 exhibited significant SCA, suggesting their potentials in hybrid development. CONCLUSIONS: Our study thoroughly investigated and reliably quantified various genetic factors associated with OC of rapeseed by using a full diallel and backcross and reciprocal backcross. This findings lay a foundation for future genetic studies of OC and provide guidance for breeding of high-oil rapeseed cultivars.


Assuntos
Brassica napus/genética , Brassica napus/metabolismo , Interação Gene-Ambiente , Genótipo , Óleos de Plantas/metabolismo , Sementes/metabolismo , Brassica napus/citologia , Citoplasma/genética , Variação Genética , Fenótipo
15.
J Sci Food Agric ; 97(6): 1924-1930, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27539751

RESUMO

BACKGROUND: Development of new genotypes having high oil content and desirable levels of fatty acid compositions is a major objective of rapeseed breeding programmes. In the current study combining ability was determined for oil, protein, glucosinolates and various fatty acids content using 8 × 8 full diallel in rapeseed (Brassica napus). RESULTS: Highly significant genotypic differences were observed for oil, protein, glucosinolates, oleic acid, linolenic acid and erucic acid content. Mean squares due to general combining ability (GCA), specific combining ability (SCA) and reciprocal combining ability (RCA) were highly significant (P ≤ 0.01) for biochemical traits. Parental line AUP-17 for high oil content and low glucosinolates, genotype AUP-2 for high protein and oleic acids, and AUP-18 for low lenolenic and erucic acid were best general combiners. Based on desirable SCA effects, F1 hybrids AUP-17 × AUP-20; AUP-2 × AUP-8; AUP-7 × AUP-14; AUP-2 × AUP-9; AUP-7 × AUP-14 and AUP-2 × AUP-9 were found superior involving at least one best general combiner. CONCLUSION: F1 hybrids AUP-17 × AUP-20 (for oil content); AUP-2 × AUP-8 (for protein content); AUP-7 × AUP-14 (for glucosinolates); AUP-2 × AUP-9 (for oleic acid); AUP-7 × AUP-14 (for linolenic acid) and AUP-2 × AUP-9 (for erucic acid) were found superior involving at least one best general combiner. As reciprocal crosses of AUP-14 with AUP-7 and AUP-8 were superior had low × low and low × high GCA effects for glucosinolates and oleic acid, respectively therefore, these could be exploited in future rapeseed breeding programmes to develop new lines with good quality. © 2016 Society of Chemical Industry.


Assuntos
Brassica napus/química , Ácidos Graxos/química , Extratos Vegetais/química , Óleos de Plantas/química , Brassica napus/genética , Brassica napus/metabolismo , Cruzamento , Cruzamentos Genéticos , Ácidos Graxos/metabolismo , Genótipo , Extratos Vegetais/metabolismo , Óleos de Plantas/metabolismo , Sementes/química , Sementes/genética , Sementes/metabolismo
16.
J Sci Food Agric ; 97(13): 4408-4418, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28485471

RESUMO

BACKGROUND: Five maize inbred lines, 20 F1 diallel hybrids and two check genotypes were evaluated through genotype × environment interaction (GEI) and GGE biplot for earliness and yield traits at four locations. RESULTS: Genotype, environment and GEI showed highly significant differences for all the traits. In total sum of squares, environment and genotype played a primary role, followed by GEI. Larger effects of environment and genotype to total variation influence the earliness and yield traits. However, according to the GGE biplot, the first two principal components (PC1 and PC2) explained 95% of the variation caused by GEI. GGE biplot confirmed the differential response of genotypes across environments. F1 hybrid SWAJK-1 × FRHW-3 had better stability, with a good yield, and was considered an ideal genotype. F1 hybrid FRHW-2 × FRHW-1 showed more earliness at CCRI and Haripur, followed by PSEV3 × FRHW-2 and its reciprocal at Swat and Mansehra, respectively. F1 hybrids FRHW-1 × SWAJK-1, PSEV3 × SWAJK-1 and SWAJK-1 × FRHW-3 at Mansehra and Swat produced maximum grain yield, followed by SWAJK-1 × FRHW-1 and PSEV3 × FRHW-1 at Haripur and CCRI, respectively. CONCLUSION: Overall, maize genotypes showed early maturity in plain areas (CCRI and Haripur) but higher yield in hilly areas (Mansehra and Swat). © 2017 Society of Chemical Industry.


Assuntos
Interação Gene-Ambiente , Sementes/crescimento & desenvolvimento , Zea mays/crescimento & desenvolvimento , Zea mays/genética , Clima , Ecossistema , Meio Ambiente , Genótipo , Fenótipo , Sementes/química , Sementes/genética , Zea mays/química
17.
J Anat ; 228(1): 96-112, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26426826

RESUMO

Using eight inbred founder strains of the mouse Collaborative Cross (CC) project and their reciprocal F1 hybrids, we quantified variation in craniofacial morphology across mouse strains, explored genetic contributions to craniofacial variation that distinguish the founder strains, and tested whether specific or summary measures of craniofacial shape display stronger additive genetic contributions. This study thus provides critical information about phenotypic diversity among CC founder strains and about the genetic contributions to this phenotypic diversity, which is relevant to understanding the basis of variation in standard laboratory strains and natural populations. Craniofacial shape was quantified as a series of size-adjusted linear dimensions (RDs) and by principal components (PC) analysis of morphological landmarks captured from computed tomography images from 62 of the 64 reciprocal crosses of the CC founder strains. We first identified aspects of skull morphology that vary between these phenotypically 'normal' founder strains and that are defining characteristics of these strains. We estimated the contributions of additive and various non-additive genetic factors to phenotypic variation using diallel analyses of a subset of these strongly differing RDs and the first eight PCs of skull shape variation. We find little difference in the genetic contributions to RD measures and PC scores, suggesting fundamental similarities in the magnitude of genetic contributions to both specific and summary measures of craniofacial phenotypes. Our results indicate that there are stronger additive genetic effects associated with defining phenotypic characteristics of specific founder strains, suggesting these distinguishing measures are good candidates for use in genotype-phenotype association studies of CC mice. Our results add significantly to understanding of genotype-phenotype associations in the skull, which serve as a foundation for modeling the origins of medically and evolutionarily relevant variation.


Assuntos
Cruzamentos Genéticos , Efeito Fundador , Locos de Características Quantitativas , Crânio/anatomia & histologia , Animais , Estudos de Associação Genética , Variação Genética , Genótipo , Camundongos , Camundongos Endogâmicos , Fenótipo , Análise de Componente Principal
18.
PeerJ ; 12: e17600, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948201

RESUMO

Combining ability status of the inbred lines is crucial information for hybrid breeding program. Diallel or line × tester mating designs are frequently used to evaluate the combining ability. In the current study a modified diallel model was used, wherein the Griffing's combining ability effects were further partitioned to understand the effects due to maternal and reciprocal. To do this, eight parental lines of maize were crossed in full diallel method and the generated hybrids along with parents were phenotyped. The field data on the quantitative traits was analyzed using both Griffing's and the modified model to determine how well the parents' and the F1 hybrids combined. For each of the traits, a sizable reciprocal and maternal variance was observed. The number of kernel rows per cob variable had a ratio of additive variance to dominance variance greater than one. All other traits including grain yield had a ratio close to zero, suggesting that non-additive gene action was primarily responsible for the genetic control of most of the traits. The narrow sense heritability was low to moderate for majority of the variables, except for number of kernel rows per cob. With the help of the improved model, it was possible to choose superior parents and cross-parent pairings with accuracy. Based on the modified general combining ability effects and maternal effects, the parental line P5 was recognized as a potential female parent and P7 as a good male parent for grain yield and yield-attributing characteristics. The cross combination of P8×P1 had the highest specific combining ability effect on grain yield. P5×P6 cross had the highest reciprocal effect. The correlation analysis implies that the Griffing's general combining ability effects and specific combining ability effects were found to be less efficient in predicting F1 performance as compared to the modified model.


Assuntos
Melhoramento Vegetal , Zea mays , Zea mays/genética , Melhoramento Vegetal/métodos , Fenótipo , Modelos Genéticos , Herança Materna/genética , Hibridização Genética
19.
Cell Genom ; 4(1): 100459, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38190102

RESUMO

Gene expression variation, an essential step between genotype and phenotype, is collectively controlled by local (cis) and distant (trans) regulatory changes. Nevertheless, how these regulatory elements differentially influence gene expression variation remains unclear. Here, we bridge this gap by analyzing the transcriptomes of a large diallel panel consisting of 323 unique hybrids originating from genetically divergent Saccharomyces cerevisiae isolates. Our analysis across 5,087 transcript abundance traits showed that non-additive components account for 36% of the gene expression variance on average. By comparing allele-specific read counts in parent-hybrid trios, we found that trans-regulatory changes underlie the majority of gene expression variation in the population. Remarkably, most cis-regulatory variations are also exaggerated or attenuated by additional trans effects. Overall, we showed that the transcriptome is globally buffered at the genetic level mainly due to trans-regulatory variation in the population.


Assuntos
Saccharomyces cerevisiae , Transcriptoma , Transcriptoma/genética , Saccharomyces cerevisiae/genética , Alelos , Fenótipo , Genótipo
20.
Heliyon ; 10(11): e31977, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38882389

RESUMO

Erucic acid, more than 2 %, in mustard seed oil is considered unhealthy as edible oil, and also anti-nutritional for human consumption. The existing mustard varieties of Bangladesh contain 40-48 % erucic acid, which is a big concern for the country's nutritional, and food security and safety. Hence, to improve the seed oil quality of the existing variety, six popular cultivars of Brassica juncea mustard were crossed with a canola-grade line in 7 × 7 half diallel fashion, and the developed 21 F1 hybrids were assessed for yield contributing traits, and fatty acids composition. Variables with significant variations were found, while days to siliquae maturity, plant height, days to first flowering, and seeds per siliquae have moderate narrow sense heritability. The estimated gene action indicated that dominant or over-dominant gene action was more prominent in governing the traits. The parents, P1, P3, and P4 were discovered the best general combiners for early maturity and short phenology, whereas P2 and P7 were found to be the best general combiners for yield-attributing traits. Moreover, the hybrids P1 × P4, P1 × P6, P2 × P7, P4 × P6 and P3 × P5 were chosen as the promising hybrids due to their best specific combining ability, and desired heterotic effects on yield contributing traits. In addition, a significant decrease, on average 30-40 %, in erucic acid, but an approximately 20-25 % increase of oleic acid was found among the hybrids, in which the hybrids P1 × P6-S1, P5 × P6-S2 and P5 × P6-S4 demonstrated a better stability index. Overall, the obtained findings suggested that the hybrids, viz. P1 × P5, P1 × P6, P2 × P3, P2 × P7, P4 × P6, P5 × P6, and P6 × P7 were promising based on their early maturity, high-yielding, reduced erucic acid, and high oleic acid contents.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa