RESUMO
Analytical technologies based on binding assays have evolved substantially since their inception nearly 60 years ago, but our conceptual understanding of molecular recognition has not kept pace. Contemporary technologies, such as single-molecule and digital measurements, have challenged, or even rendered obsolete, core concepts behind conventional binding assay design. Here, we explore the fundamental principles underlying molecular recognition systems, which we consider in terms of signals generated through concentration-dependent shifts in equilibrium. We challenge certain orthodoxies related to binding-based detection assays, including the primary importance of a low dissociation constant (KD) and the extent to which this parameter constrains dynamic range and limit of detection. Lastly, we identify key principles for designing binding assays that are optimally suited for a given detection application.
Assuntos
Sítios de Ligação , Limite de Detecção , TermodinâmicaRESUMO
Nucleic acid tests are key tools for the detection and diagnosis of many diseases. In many cases, the amplification of the nucleic acids is required to reach a detectable level. To make nucleic acid amplification tests more accessible to a point-of-care (POC) setting, isothermal amplification can be performed with a simple heating source. Although these tests are being performed in bulk reactions, the quantification is not as accurate as it would be with digital amplification. Here, we introduce the use of the vibrating sharp-tip capillary for a simple and portable system for tunable on-demand droplet generation. Because of the large range of droplet sizes possible and the tunability of the vibrating sharp-tip capillary, a high dynamic range (~2 to 6000 copies/µL) digital droplet loop-mediated isothermal amplification (ddLAMP) system has been developed. It was also noted that by changing the type of capillary on the vibrating sharp-tip capillary, the same mechanism can be used for simple and portable DNA fragmentation. With the incorporation of these elements, the present work paves the way for achieving digital nucleic acid tests in a POC setting with limited resources.
Assuntos
Técnicas de Amplificação de Ácido Nucleico , Técnicas de Amplificação de Ácido Nucleico/métodos , Técnicas de Amplificação de Ácido Nucleico/instrumentação , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação , Vibração , Sistemas Automatizados de Assistência Junto ao Leito , Humanos , Ácidos Nucleicos/análise , DNA/análise , DNA/genética , DNA/químicaRESUMO
Biomolecular interactions compose a fundamental element of all life forms and are the biological basis of many biomedical assays. However, current methods for detecting biomolecular interactions have limitations in sensitivity and specificity. Here, using nitrogen-vacancy centers in diamond as quantum sensors, we demonstrate digital magnetic detection of biomolecular interactions with single magnetic nanoparticles (MNPs). We first developed a single-particle magnetic imaging (SiPMI) method on 100 nm-sized MNPs with negligible magnetic background, high signal stability, and accurate quantification. The single-particle method was performed on biotin-streptavidin interactions and DNA-DNA interactions in which a single-base mismatch was specifically differentiated. Subsequently, SARS-CoV-2-related antibodies and nucleic acids were examined by a digital immunomagnetic assay derived from SiPMI. In addition, a magnetic separation process improved the detection sensitivity and dynamic range by more than 3 orders of magnitude and also the specificity. This digital magnetic platform is applicable to extensive biomolecular interaction studies and ultrasensitive biomedical assays.
Assuntos
COVID-19 , Nanopartículas , Humanos , SARS-CoV-2 , DNA , Fenômenos MagnéticosRESUMO
Rapid detection of whole virus particles in biological or environmental samples represents an unmet need for the containment of infectious diseases. Here, an optical device enabling the enumeration of single virion particles binding on antibody or aptamers immobilized on a surface with anti-reflective coating is described. In this regime, nanoparticles adhering to the sensor surface provide localized contributions to the reflected field that become detectable because of their mixing with the interfering waves in the reflection direction. Thus, these settings are exploited to realize a scan-free, label-free, micro-array-type digital assay on a disposable cartridge, in which the virion counting takes place in wide field-of-view imaging. With this approach we could quantify, by enumeration, different variants of SARS-CoV-2 virions interacting with antibodies and aptamers immobilized on different spots. For all tested variants, the aptamers showed larger affinity but lower specificity relative to the antibodies. It is found that the combination of different probes on the same surface enables increasing specificity of detection and dynamic range.
Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , COVID-19 , Humanos , SARS-CoV-2 , Técnicas Biossensoriais/métodos , Anticorpos , VírionRESUMO
Sensitive biomarker detection techniques are beneficial for both disease diagnosis and postoperative examinations. In this study, we report an integrated microfluidic chip designed for the immunodetection of prostate-specific antigens (PSAs). The microfluidic chip is based on the three-dimensional structure of quartz capillaries. The outlet channel extends to 1.8 cm, effectively facilitating the generation of uniform droplets ranging in size from 3 to 50 µm. Furthermore, we successfully immobilized the captured antibodies onto the surface of magnetic beads using an activator, and we constructed an immunosandwich complex by employing biotinylated antibodies. A key feature of this microfluidic chip is its integration of microfluidic droplet technology advantages, such as high-throughput parallelism, enzymatic signal amplification, and small droplet size. This integration results in an exceptionally sensitive PSA detection capability, with the detection limit reduced to 7.00 ± 0.62 pg/mL.
Assuntos
Técnicas Analíticas Microfluídicas , Antígeno Prostático Específico , Humanos , Masculino , Microfluídica/métodos , Campos Magnéticos , Biomarcadores , Imunoensaio/métodosRESUMO
Centrifugal droplet-based microfluidic devices have been applied to biomedical analysis and diagnostics recently. However, in centrifugal droplet-based microfluidic devices, droplets are tightly packed (i.e., the oil film between neighbouring droplets is thin). Therefore, droplet coalescence usually occurs especially during thermal incubation process. To preserve individual droplets in the devices, we report a new design for monodisperse droplet generation and storage that exploits a centrifugal configuration for droplet emulsification and oil-storage structures (OSSs) for regulation of the thickness of oil film between neighbouring droplets. The centrifugal emulsifier was well designed to ensure uniform droplet generation. Meanwhile, the OSSs could store oil during centrifugal emulsification while release oil before thermal incubation, which "loosen" tightly packed droplets to prevent droplets from coalescing. In this paper, the working process of OSS was analysed, and its shape and size were optimized. Then, the optimized OSSs were integrated into a centrifugal emulsifier for droplet digital loop mediated isothermal amplification (ddLAMP) by which detection of JAK2 V617F mutation within myeloproliferative neoplasms with a dynamic range of 101 to 104 copies per µL was achieved. We anticipate that the simplicity and robustness of our system make it attractive as an inexpensive and easy-to-operate device for DNA amplification, particularly applicable in point-of-care settings.
Assuntos
Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , Óleos/química , Substituição de Aminoácidos , Centrifugação , Emulsões , Neoplasias Hematológicas/genética , Humanos , Janus Quinase 2/genética , Mutação de Sentido Incorreto , Transtornos Mieloproliferativos/genética , Proteínas de Neoplasias/genéticaRESUMO
A digital detection strategy based on a portable personal glucometer (PGM) was developed for the simple, rapid, and sensitive detection of hepatitis C virus (HCV) RNA, involving the release of glucose-loaded nanoliposomes due to coupling-site-specific cleavage by the endonuclease BamHI. The glucose-loaded nanoliposomes were synthesized using a reversed-phase evaporation method and provided an amplified signal at the PGM in the presence of HCV RNA. Initially, a 21-mer oligonucleotide complementary to HCV RNA was covalently conjugated to a magnetic bead through the amino group at the 5' end of the oligonucleotide, and then bound to a glucose-loaded liposome by typical carbodiimide coupling at its 3' end. In the presence of the target HCV RNA, the target hybridized with the oligonucleotide to form double-stranded DNA. The symmetrical duplex sequence 5'-GGATCC-3' between guanines was then catalytically cleaved by BamHI, which detached the glucose-loaded liposome from the magnetic bead. Following magnetic separation of the bead, the detached glucose-loaded liposome was lysed using Triton X-100 to release the glucose molecules within it, which were then detected as an amplified signal at the digital PGM. Under optimal conditions, the PGM signal increased with increasing HCV RNA, and displayed a strongly linear dependence on the level of HCV RNA for concentrations ranging from 10 pM to 1.0 µM. The detection limit (LOD) of the system was 1.9 pM. Good reproducibility and favorable specificity were achieved in the analysis of the target HCV RNA. Human serum samples containing HCV RNA were analyzed using this strategy, and the developed sensing platform was observed to yield satisfactory results based on a comparison with the corresponding results from a Cobas® Amplicor HCV Test Analyzer. Graphical abstract A digital detection strategy utilizing a personal glucometer was developed for the detection of hepatitis C virus RNA. The strategy involved the use of the endonuclease BamHI along with a 21-mer oligonucleotide conjugated to both a magnetic bead and a glucose-loaded nanoliposome. Hybridization of the nucleotide with the target RNA triggered the coupling-site-specific cleavage of the duplex by BamHI, leading to the release of the glucose-loaded nanoliposome. Following separation of the magnetic bead, the free nanoliposome was dissolved, liberating the glucose molecules within it, which in turn were detected as an amplified signal by the glucometer.
Assuntos
Técnicas Biossensoriais/métodos , Automonitorização da Glicemia/métodos , Desoxirribonuclease BamHI/química , Hepacivirus/isolamento & purificação , Hepatite C/diagnóstico , Ácidos Nucleicos Imobilizados/química , RNA Viral/análise , Sequência de Bases , DNA de Cadeia Simples/química , Glucose/análise , Hepatite C/sangue , Humanos , Limite de Detecção , Lipossomos/química , Hibridização de Ácido Nucleico/métodos , RNA Viral/sangue , Reprodutibilidade dos TestesRESUMO
Single-molecule and single-nanoparticle biosensors are a growing frontier in diagnostics. Digital biosensors are those which enumerate all specifically immobilized biomolecules or biological nanoparticles, and thereby achieve limits of detection usually beyond the reach of ensemble measurements. Here we review modern optical techniques for single nanoparticle detection and describe the single-particle interferometric reflectance imaging sensor (SP-IRIS). We present challenges associated with reliably detecting faint nanoparticles with SP-IRIS, and describe image acquisition processes and software modifications to address them. Specifically, we describe a image acquisition processing method for the discrimination and accurate counting of nanoparticles that greatly reduces both the number of false positives and false negatives. These engineering improvements are critical steps in the translation of SP-IRIS towards applications in medical diagnostics.
RESUMO
Over the last decade, the growing need in disease diagnostics has stimulated rapid development of new technologies with unprecedented capabilities. Recent emerging infectious diseases and epidemics have revealed the shortcomings of existing diagnostics tools, and the necessity for further improvements. Optical biosensors can lay the foundations for future generation diagnostics by providing means to detect biomarkers in a highly sensitive, specific, quantitative and multiplexed fashion. Here, we review an optical sensing technology, Interferometric Reflectance Imaging Sensor (IRIS), and the relevant features of this multifunctional platform for quantitative, label-free and dynamic detection. We discuss two distinct modalities for IRIS: (i) low-magnification (ensemble biomolecular mass measurements) and (ii) high-magnification (digital detection of individual nanoparticles) along with their applications, including label-free detection of multiplexed protein chips, measurement of single nucleotide polymorphism, quantification of transcription factor DNA binding, and high sensitivity digital sensing and characterization of nanoparticles and viruses.
Assuntos
Técnicas Biossensoriais/instrumentação , Diagnóstico por Imagem/instrumentação , Interferometria/instrumentação , Processamento de Sinais Assistido por Computador , HumanosRESUMO
Fourier transform infrared (FTIR) spectroscopic imaging is an emerging microscopy modality for clinical histopathologic diagnoses as well as for biomedical research. Spectral data recorded in this modality are indicative of the underlying, spatially resolved biochemical composition but need computerized algorithms to digitally recognize and transform this information to a diagnostic tool to identify cancer or other physiologic conditions. Statistical pattern recognition forms the backbone of these recognition protocols and can be used for highly accurate results. Aided by biochemical correlations with normal and diseased states and the power of modern computer-aided pattern recognition, this approach is capable of combating many standing questions of traditional histology-based diagnosis models. For example, a simple diagnostic test can be developed to determine cell types in tissue. As a more advanced application, IR spectral data can be integrated with patient information to predict risk of cancer, providing a potential road to precision medicine and personalized care in cancer treatment. The IR imaging approach can be implemented to complement conventional diagnoses, as the samples remain unperturbed and are not destroyed. Despite high potential and utility of this approach, clinical implementation has not yet been achieved due to practical hurdles like speed of data acquisition and lack of optimized computational procedures for extracting clinically actionable information rapidly. The latter problem has been addressed by developing highly efficient ways to process IR imaging data but remains one that has considerable scope for progress. Here, we summarize the major issues and provide practical considerations in implementing a modified Bayesian classification protocol for digital molecular pathology. We hope to familiarize readers with analysis methods in IR imaging data and enable researchers to develop methods that can lead to the use of this promising technique for digital diagnosis of cancer.
Assuntos
Algoritmos , Biomarcadores Tumorais/análise , Diagnóstico por Computador/métodos , Neoplasias/química , Neoplasias/diagnóstico , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Humanos , Imagem Molecular/métodosRESUMO
Rapid and precise nucleic acid testing at the point-of-care (POC) is essential for effective screening and management of infectious diseases. Current polymerase-based molecular diagnostics often suffer from potential cross-contamination issues, particularly in POC settings. Here, we introduce DECODE, a contamination-free nucleic acid detection platform integrating digital microfluidics (DMF) for nucleic acid extraction and a digital CRISPR amplification-free assay for pathogen detection. The digital CRISPR assay demonstrates sensitivity, detecting target DNA and RNA in the reaction mixture at concentrations of 10 and 5 copies/µL, respectively. Leveraging DMF-extracted samples enhances the performance of the digital CRISPR amplification-free assay. DECODE offers a sample-to-result workflow of 75 min using compact devices. Validation studies using clinical samples confirm DECODE's robust performance, achieving 100% sensitivity and specificity in detecting HPV18 from cervical epithelial cells and influenza A from nasal swabs. DECODE represents a versatile, contamination-free detection platform poised to enhance integrated public health surveillance efforts.
Assuntos
DNA Viral , Sistemas Automatizados de Assistência Junto ao Leito , RNA Viral , RNA Viral/análise , RNA Viral/genética , Humanos , DNA Viral/análise , DNA Viral/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Papillomavirus Humano 18/genética , Papillomavirus Humano 18/isolamento & purificação , Vírus da Influenza A/isolamento & purificação , Vírus da Influenza A/genéticaRESUMO
Extracellular vesicles (EVs), crucial mediators of cell-to-cell communication, hold significant diagnostic potential due to their ability to concentrate protein biomarkers in bodily fluids. However, challenges in isolating EVs from biological specimens hinder their widespread use. The preferred strategy involves direct analysis, integrating isolation and analysis solutions, with immunoaffinity methods currently dominating. Yet, the heterogeneous nature of EVs poses challenges, as proposed markers may not be as universally present as thought, raising concerns about biomarker screening reliability. This issue extends to EV-mimics, where conventional methods may lack applicability. Addressing these challenges, the study reports on Membrane Sensing Peptides (MSP) as pan-vesicular affinity ligands for both EVs and their non-canonical analogs, streamlining capture and phenotyping through Single Molecule Array (SiMoA). MSP ligands enable direct analysis of circulating EVs, eliminating the need for prior isolation. Demonstrating clinical translation, MSP technology detects an EV-associated epitope signature in serum and plasma, distinguishing myocardial infarction from stable angina. Additionally, MSP allow analysis of tetraspanin-lacking Red Blood Cell-derived EVs, overcoming limitations associated with antibody-based methods. Overall, the work underlines the value of MSP as complementary tools to antibodies, advancing EV analysis for clinical diagnostics and beyond, and marking the first-ever peptide-based application in SiMoA technology.
Assuntos
Biomarcadores , Vesículas Extracelulares , Peptídeos , Vesículas Extracelulares/metabolismo , Humanos , Peptídeos/metabolismo , Biomarcadores/metabolismoRESUMO
Nucleic acid quantification, allowing us to accurately know the copy number of target nucleic acids, is significant for diagnosis, food safety, agricultural production, and environmental protection. However, current digital quantification methods require expensive instruments or complicated microfluidic chips, making it difficult to popularize in the point-of-care detection. Paper is an inexpensive and readily available material. In this study, we propose a simple and cost-effective paper membrane-based digital loop-mediated isothermal amplification (LAMP) method for nucleic acid quantification. In the presence of DNA fluorescence dyes, the high background signals will cover up the amplicons-formed bright spots. To reduce the background fluorescence signals, a quencher-fluorophore duplex was introduced in LAMP primers to replace non-specific fluorescence dyes. After that, the amplicons-formed spots on the paper membrane can be observed; thus, the target DNA can be quantified by counting the spots. Take Vibrio parahaemolyticus DNA detection as an instance, a good linear relationship is obtained between the light spots and the copy numbers of DNA. The paper membrane-based digital LAMP detection can detect 100 copies target DNA per reaction within 30 min. Overall, the proposed nucleic acid quantification method has the advantages of a simple workflow, short sample-in and answer-out time, low cost, and high signal-to-noise, which is promising for application in resourced limited areas.
Assuntos
Ácidos Nucleicos , Sistemas Automatizados de Assistência Junto ao Leito , DNA , Técnicas de Amplificação de Ácido Nucleico/métodos , Primers do DNA/genética , Corantes FluorescentesRESUMO
INTRODUCTION: A bone scan (BS) plays a pivotal role in many oncological and non-oncological conditions. The planar BS is characterized by high sensitivity but low specificity. With respect to planar imaging, the implementation of single-photon emission computed tomography (SPECT) has allowed increased image contrast and more accurate tracer localization. AREAS COVERED: Recent technological innovations in the field of BS are treated, with a particular focus on multi-field-of-view devices allowing to cover the entire scan length with a 3D acquisition (WB-SPECT/CT). In addition, the applications of cadmium zinc telluride/CzT detectors capable of converting gamma photons directly into electrical impulses (i.e. 'digital SPECT') are discussed. EXPERT OPINION: Initial clinical experiences indicate that WB-SPECT/CT is characterized by higher sensitivity, diagnostic accuracy, and increased confidence in image interpretation with respect to the 'old-fashioned' BS (planar images with or without a single field-of-view SPECT). Furthermore, CzT-based detectors, thanks to their superior sensitivity, might be helpful to implement fast acquisition protocols. Further studies are needed to better define the clinical impact of bone CzT WB-SPECT/CT on patients' management and outcome, as well as its cost-benefit ratio.
Assuntos
Osso e Ossos , Tomografia Computadorizada de Emissão de Fóton Único , Humanos , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Cádmio , Tomografia Computadorizada por Raios X/métodos , Dedos do PéRESUMO
The detection of biomarkers at low concentrations is important in clinical diagnostic analyses and has attracted continuous research. In this work, absolute quantification of hepatitis B virus (HBV) DNA was achieved using magnetic beads with isothermal, enzyme-free DNA nanostructure for fluorescence amplification. Firstly, the DNA-functionalized bead captured the target nucleic acid in the form of sandwich hybridization, and the individual target lighted up the entire bead by isothermal web hybridization chain reaction (wHCR). After the microarray scanning, the target nucleic acids can be digitally quantified based on the Poisson statistics. Therefore, the fluorescent bead assay enabled precise detection of HBV DNA down to 5 fM level without external calibration curves. Moreover, this method not only specifically distinguished single-base mismatched sequences, but also obtained the quantitative detection of HBV DNA in serum samples. Unlike routine digital detection usually combined with complex compartment partitioning operations, the amplification structure immobilized on beads can be conducted in microcentrifuge tubes with a volume of microliter scale. This work expands the application of magnetic beads in the digital quantitative detection via enzyme-free and isothermal method.
Assuntos
DNA Viral , Fenômenos Magnéticos , DNA Viral/genéticaRESUMO
Conventional nucleic acid detection technologies usually rely on amplification to improve sensitivity, which has drawbacks, such as amplification bias, complicated operation, high requirements for complex instruments, and aerosol pollution. To address these concerns, we developed an integrated assay for the enrichment and single molecule digital detection of nucleic acid based on a CRISPR/Cas13a and microwell array. In our design, magnetic beads capture and concentrate the target from a large volume of sample, which is 100 times larger than reported earlier. The target-induced CRISPR/Cas13a cutting reaction was then dispersed and limited to a million individual femtoliter-sized microwells, thereby enhancing the local signal intensity to achieve single-molecule detection. The limit of this assay for amplification-free detection of SARS-CoV-2 is 2 aM. The implementation of this study will establish a "sample-in-answer-out" single-RNA detection technology without amplification and improve the sensitivity and specificity while shortening the detection time. This research has broad prospects in clinical application.
Assuntos
COVID-19 , Ácidos Nucleicos , Humanos , RNA , Sistemas CRISPR-Cas , SARS-CoV-2 , RNA Viral , Técnicas de Amplificação de Ácido NucleicoRESUMO
Despite their clinical potential, Extracellular Vesicles (EVs) struggle to take the scene as a preeminent source of biomarkers in liquid biopsy. Limitations in the use of EVs origin from their inherent complexity and heterogeneity and from the sensitivity demand in detecting low to very low abundant disease-specific sub-populations. Such need can be met by digital detection, namely capable to reach the single-molecule sensitivity. Here we set to compare, side by side, two digital detection platforms that have recently gained increasing importance in the field of EVs. The platforms, both commercially available, are based on the principles of the Single Particle Interferometric Reflectance Imaging Sensing (SP-IRIS) and the Single Molecule Array technology (SiMoA) respectively. Sensitivity in immune-phenotyping of a well characterized EV sample is reported, discussing possible applicative implications and rationales for alternative or complementary use of the two platforms in biomarker discovery or validation.
RESUMO
Rapid, ultrasensitive, and selective quantification of circulating microRNA (miRNA) biomarkers in body fluids is increasingly deployed in early cancer diagnosis, prognosis, and therapy monitoring. While nanoparticle tags enable detection of nucleic acid or protein biomarkers with digital resolution and subfemtomolar detection limits without enzymatic amplification, the response time of these assays is typically dominated by diffusion-limited transport of the analytes or nanotags to the biosensor surface. Here, we present a magnetic activate capture and digital counting (mAC+DC) approach that utilizes magneto-plasmonic nanoparticles (MPNPs) to accelerate single-molecule sensing, demonstrated by miRNA detection via toehold-mediated strand displacement. Spiky Fe3O4@Au MPNPs with immobilized target-specific probes are "activated" by binding with miRNA targets, followed by magnetically driven transport through the bulk fluid toward nanoparticle capture probes on a photonic crystal (PC). By spectrally matching the localized surface plasmon resonance of the MPNPs to the PC-guided resonance, each captured MPNP locally quenches the PC reflection efficiency, thus enabling captured MPNPs to be individually visualized with high contrast for counting. We demonstrate quantification of the miR-375 cancer biomarker directly from unprocessed human serum with a 1 min response time, a detection limit of 61.9 aM, a broad dynamic range (100 aM to 10 pM), and a single-base mismatch selectivity. The approach is well-suited for minimally invasive biomarker quantification, enabling potential applications in point-of-care testing with short sample-to-answer time.
Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , MicroRNAs , Biomarcadores Tumorais , Ouro/química , Humanos , Limite de Detecção , Nanopartículas Metálicas/química , MicroRNAs/genética , Microscopia , Ressonância de Plasmônio de SuperfícieRESUMO
Droplet encapsulation of a single cell or bead is widely used in digital detection, single-cell sequencing, and drug screening. However, the encapsulation of particles is totally random restricted by the Poisson distribution. The theoretical possibility of single-particle encapsulation is usually only approximately 10%. In ultra-high multiplexed digital detection or other applications that needing to measure large numbers of particles, the number of the partitions required to be counted is extremely high, further result in great increase of statistical number of invalid droplets and the redundancy of detection data. Here, a bead ordered arrangement droplet (BOAD) system is proposed to break through the Poisson distribution. BOAD system tactfully combines sheath flow, Dean vortex, and compression flow channel to achieve orderly arrangement of particles for the first time, and could achieve the fastest orderly arrangement of particles in the shortest structure. The efficiency of single-bead encapsulation is improved to as high as 86%. Further application to encapsulate encoding beads and IL-10-targeted magnetic beads demonstrates the potential for bead-based ultra-high multiplexed digital detection. Thus, use of the BOAD system is very promising for many applications needing high single-particle encapsulation ratio in limited partitions, such as multiplexed digital bio-detection, single-cell analysis, drug screening, and single exosome detection.
Assuntos
Técnicas Biossensoriais , Técnicas Analíticas Microfluídicas , Imunoensaio , Microfluídica , Distribuição de Poisson , Análise de Célula ÚnicaRESUMO
Digital quantification based on counting of individual molecules is a promising approach for different biomedical applications due to its enhanced sensitivity. Here, we present a method for the digital detection of nucleic acids (DNA and RNA) on silicon microchips based on the counting of gold nanoparticles (GNPs) in DNA duplexes by scanning electron microscopy (SEM). Biotin-labeled DNA is hybridized with capture oligonucleotide probes immobilized on the microchips. Then biotin is revealed by a streptavidin-GNP conjugate followed by the detection of GNPs. Sharp images of each nanoparticle allow the visualization of hybridization results on a single-molecule level. The technique was shown to provide highly sensitive quantification of both short oligonucleotide and long double-strand DNA sequences up to 800 bp. The lowest limit of detection of 0.04 pM was determined for short 19-mer oligonucleotide. The method's applicability was demonstrated for the multiplex quantification of several ß-lactamase genes responsible for the development of bacterial resistance against ß-lactam antibiotics. Determination of nucleic acids is effective for both specific DNA in lysates and mRNA in transcripts. The method is also characterized by high selectivity for single-nucleotide polymorphism discrimination. The proposed principle of digital quantification is a perspective for studying the mechanisms of bacterial antibiotic resistance and bacterial response to drugs.