Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Vavilovskii Zhurnal Genet Selektsii ; 25(5): 465-471, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34595369

RESUMO

The insulin/insulin-like growth factor signaling (IIS) pathway is one of the key elements in an organism's response to unfavourable conditions. The deep homology of this pathway and its evolutionary conservative role in controlling the carbohydrate and lipid metabolism make it possible to use Drosophila melanogaster for studying its functioning. To identify the properties of interaction of two key IIS pathway components under heat stress in D. melanogaster (the forkhead box O transcription factor (dfoxo) and insulin-like peptide 6 (dilp6), which intermediates the dfoxo signal sent from the fat body to the insulin-producing cells of the brain where DILPs1-5 are synthesized), we analysed the expression of the genes dilp6, dfoxo and insulin-like receptor gene (dInR) in females of strains carrying the hypomorphic mutation dilp6 41and hypofunctional mutation foxo BG01018. We found that neither mutation inf luenced dfoxo expression and its uprise under short-term heat stress, but both of them disrupted the stress response of the dilp6 and dInR genes. To reveal the role of identif ied disruptions in metabolism control and feeding behaviour, we analysed the effect of the dilp6 41 and foxo BG01018 mutations on total lipids content and capillary feeding intensity in imago under normal conditions and under short-term heat stress. Both mutations caused an increase in these parameters under normal conditions and prevented decrease in total lipids content following heat stress observed in the control strain. In mutants, feeding intensity was increased under normal conditions; and decreased following short-term heat stress in all studied strains for the f irst 24 h of observation, and in dilp6 41 strain, for 48 h. Thus, we may conclude that dfoxo takes part in regulating the IIS pathway response to heat stress as well as the changes in lipids content caused by heat stress, and this regulation is mediated by dilp6. At the same time, the feeding behaviour of imago might be controlled by dfoxo and dilp6 under normal conditions, but not under heat stress.

2.
Elife ; 102021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33527895

RESUMO

Understanding how injury to the central nervous system induces de novo neurogenesis in animals would help promote regeneration in humans. Regenerative neurogenesis could originate from glia and glial neuron-glia antigen-2 (NG2) may sense injury-induced neuronal signals, but these are unknown. Here, we used Drosophila to search for genes functionally related to the NG2 homologue kon-tiki (kon), and identified Islet Antigen-2 (Ia-2), required in neurons for insulin secretion. Both loss and over-expression of ia-2 induced neural stem cell gene expression, injury increased ia-2 expression and induced ectopic neural stem cells. Using genetic analysis and lineage tracing, we demonstrate that Ia-2 and Kon regulate Drosophila insulin-like peptide 6 (Dilp-6) to induce glial proliferation and neural stem cells from glia. Ectopic neural stem cells can divide, and limited de novo neurogenesis could be traced back to glial cells. Altogether, Ia-2 and Dilp-6 drive a neuron-glia relay that restores glia and reprogrammes glia into neural stem cells for regeneration.


Assuntos
Sistema Nervoso Central/lesões , Drosophila melanogaster/crescimento & desenvolvimento , Neurogênese , Regeneração , Animais , Autoanticorpos/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Larva/genética , Larva/metabolismo , Células-Tronco Neurais/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Somatomedinas/metabolismo
3.
Cell Rep ; 28(6): 1439-1446.e5, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31390559

RESUMO

Chronic enteropathogen infection in early childhood reduces circulating insulin-like growth factor 1 (IGF1) levels and restricts growth. Pathogen-derived molecules activate host Toll-like receptors to initiate the immune response, but whether this pathway contributes to growth inhibition is unclear. In Drosophila, activation of Toll receptors in larval fat body suppresses whole-animal growth. Here, using a transcriptomic approach, we identify Drosophila insulin-like peptide 6 (Dilp6), a fat-body-derived IGF1 ortholog, as a selective target of Toll signaling induced by infection or genetic activation of the pathway. Using a tagged allele that we generated to measure endogenous Dilp6, we find a marked reduction in circulating hormone levels. Restoring Dilp6 expression in fat body rescues growth in animals with active Toll signaling. Our results establish that Toll signaling reduces growth by inducing hormone insufficiency, implying a mechanistic link between innate immune signaling and endocrine regulation of growth.


Assuntos
Proteínas de Drosophila/metabolismo , Corpo Adiposo/metabolismo , Somatomedinas/metabolismo , Animais , Drosophila , Transdução de Sinais
4.
Front Physiol ; 4: 217, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23966952

RESUMO

A quarter of a century has passed since bombyxin, the first insulin-like peptide identified in insects, was discovered in the silkmoth Bombyx mori. During these years, bombyxin has been studied for its structure, genes, distribution, hemolymph titers, secretion control, as well as physiological functions, thereby stimulating a wide range of studies on insulin-like peptides in other insects. Moreover, recent studies have identified a new class of insulin family peptides, IGF-like peptides, in B. mori and Drosophila melanogaster, broadening the base of the research area of the insulin-related peptides in insects. In this review, we describe the achievements of the studies on insulin-like and IGF-like peptides mainly in B. mori with short histories of their discovery. Our emphasis is that bombyxins, secreted by the brain neurosecretory cells, regulate nutrient-dependent growth and metabolism, whereas the IGF-like peptides, secreted by the fat body and other peripheral tissues, regulate stage-dependent growth of tissues.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa