Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Adv Funct Mater ; 31(26)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38031546

RESUMO

A goal in the field of nanoscale optics is the fabrication of nanostructures with strong directional light scattering at visible frequencies. Here, the synthesis of Mie-resonant core-shell particles with overlapping electric and magnetic dipole resonances in the visible spectrum is demonstrated. The core consists of silicon surrounded by a lower index silicon oxynitride (SiOxNy) shell of an adjustable thickness. Optical spectroscopies coupled to Mie theory calculations give the first experimental evidence that the relative position and intensity of the magnetic and electric dipole resonances are tuned by changing the core-shell architecture. Specifically, coating a high-index particle with a low-index shell coalesces the dipoles, while maintaining a high scattering efficiency, thus generating broadband forward scattering. This synthetic strategy opens a route toward metamaterial fabrication with unprecedented control over visible light manipulation.

2.
ACS Nano ; 12(2): 1720-1731, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29406752

RESUMO

Directional optical nanoantennas are often realized by nanostructured systems with ingenious or complex designs. Herein we report on the realization of directional scattering of visible light from a simple configuration made of single Ag nanorods supported on Si substrates, where the incident light can be routed toward the two flanks of each nanorod. Such an intriguing far-field scattering behavior, which has not been investigated so far, is proved to result from the near-field coupling between high-aspect-ratio Ag nanorods and high-refractive-index Si substrates. A simple and intuitive model is proposed, where the complicated plasmon resonance is found to be equivalent to several vertically aligned electric dipoles oscillating in phase, to understand the far-field properties of the system. The interference among the electric dipoles results in wavefront reshaping and sidewise light routing in a similar manner to the broadside antenna described in the traditional antenna theory, allowing for the naming of these Si-supported Ag nanorods as "broadside nanoantennas". We have carried out comprehensive experiments to understand the physical origins behind and the affecting factors on the directional scattering behavior of such broadside nanoantennas.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa