Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Cell ; 178(5): 1260-1272.e14, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31442410

RESUMO

Infectious disease is both a major force of selection in nature and a prime cause of yield loss in agriculture. In plants, disease resistance is often conferred by nucleotide-binding leucine-rich repeat (NLR) proteins, intracellular immune receptors that recognize pathogen proteins and their effects on the host. Consistent with extensive balancing and positive selection, NLRs are encoded by one of the most variable gene families in plants, but the true extent of intraspecific NLR diversity has been unclear. Here, we define a nearly complete species-wide pan-NLRome in Arabidopsis thaliana based on sequence enrichment and long-read sequencing. The pan-NLRome largely saturates with approximately 40 well-chosen wild strains, with half of the pan-NLRome being present in most accessions. We chart NLR architectural diversity, identify new architectures, and quantify selective forces that act on specific NLRs and NLR domains. Our study provides a blueprint for defining pan-NLRomes.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas NLR/genética , Alelos , Proteínas de Arabidopsis/metabolismo , Resistência à Doença/genética , Variação Genética , Genoma de Planta , Proteínas NLR/metabolismo , Doenças das Plantas/genética , Imunidade Vegetal , Especificidade da Espécie
2.
BMC Plant Biol ; 24(1): 144, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38413860

RESUMO

BACKGROUND: Aphanomyces euteiches is a soil-borne oomycete that causes root rot in pea and other legume species. Symptoms of Aphanomyces root rot (ARR) include root discoloration and wilting, leading to significant yield losses in pea production. Resistance to ARR is known to be polygenic but the roles of single genes in the pea immune response are still poorly understood. This study uses transcriptomics to elucidate the immune response of two pea genotypes varying in their levels of resistance to A. euteiches. RESULTS: In this study, we inoculated roots of the pea (P. sativum L.) genotypes 'Linnea' (susceptible) and 'PI180693' (resistant) with two different A. euteiches strains varying in levels of virulence. The roots were harvested at 6 h post-inoculation (hpi), 20 hpi and 48 hpi, followed by differential gene expression analysis. Our results showed a time- and genotype-dependent immune response towards A. euteiches infection, involving several WRKY and MYB-like transcription factors, along with genes associated with jasmonic acid (JA) and abscisic acid (ABA) signaling. By cross-referencing with genes segregating with partial resistance to ARR, we identified 39 candidate disease resistance genes at the later stage of infection. Among the genes solely upregulated in the resistant genotype 'PI180693', Psat7g091800.1 was polymorphic between the pea genotypes and encoded a Leucine-rich repeat receptor-like kinase reminiscent of the Arabidopsis thaliana FLAGELLIN-SENSITIVE 2 receptor. CONCLUSIONS: This study provides new insights into the gene expression dynamics controlling the immune response of resistant and susceptible pea genotypes to A. euteiches infection. We present a set of 39 candidate disease resistance genes for ARR in pea, including the putative immune receptor Psat7g091800.1, for future functional validation.


Assuntos
Aphanomyces , Resistência à Doença , Resistência à Doença/genética , Locos de Características Quantitativas , Aphanomyces/genética , Pisum sativum/genética , Doenças das Plantas/genética , Perfilação da Expressão Gênica
3.
Plant J ; 110(6): 1592-1602, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35365907

RESUMO

The activation of plant immunity is mediated by resistance (R)-gene receptors, also known as nucleotide-binding leucine-rich repeat (NB-LRR) genes, which in turn trigger the authentic defense response. R-gene identification is a crucial goal for both classic and modern plant breeding strategies for disease resistance. The conventional method identifies NB-LRR genes using a protein motif/domain-based search (PDS) within an automatically predicted gene set of the respective genome assembly. PDS proved to be imprecise since repeat masking prior to automatic genome annotation unwittingly prevented comprehensive NB-LRR gene detection. Furthermore, R-genes have diversified in a species-specific manner, so that NB-LRR gene identification cannot be universally standardized. Here, we present the full-length Homology-based R-gene Prediction (HRP) method for the comprehensive identification and annotation of a genome's R-gene repertoire. Our method has substantially addressed the complex genomic organization of tomato (Solanum lycopersicum) NB-LRR gene loci, proving to be more performant than the well-established RenSeq approach. HRP efficiency was also tested on three differently assembled and annotated Beta sp. genomes. Indeed, HRP identified up to 45% more full-length NB-LRR genes compared to previous approaches. HRP also turned out to be a more refined strategy for R-gene allele mining, testified by the identification of hitherto undiscovered Fom-2 homologs in five Cucurbita sp. genomes. In summary, our high-performance method for full-length NB-LRR gene discovery will propel the identification of novel R-genes towards development of improved cultivars.


Assuntos
Genes de Plantas , Solanum lycopersicum , Resistência à Doença/genética , Genes de Plantas/genética , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Melhoramento Vegetal , Doenças das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Homologia de Sequência
4.
Phytopathology ; 113(5): 771-785, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36324059

RESUMO

Disease resistance improvement remains a major focus in breeding programs as diseases continue to devastate Brassica production systems due to intensive cultivation and climate change. Genomics has paved the way to understand the complex genomes of Brassicas, which has been pivotal in the dissection of the genetic underpinnings of agronomic traits driving the development of superior cultivars. The new era of genomics-assisted disease resistance breeding has been marked by the development of high-quality genome references, accelerating the identification of disease resistance genes controlling both qualitative (major) gene and quantitative resistance. This facilitates the development of molecular markers for marker assisted selection and enables genome editing approaches for targeted gene manipulation to enhance the genetic value of disease resistance traits. This review summarizes the key advances in the development of genomic resources for Brassica species, focusing on improved genome references, based on long-read sequencing technologies and pangenome assemblies. This is further supported by the advances in pathogen genomics, which have resulted in the discovery of pathogenicity factors, complementing the mining of disease resistance genes in the host. Recognizing the co-evolutionary arms race between the host and pathogen, it is critical to identify novel resistance genes using crop wild relatives and synthetic cultivars or through genetic manipulation via genome-editing to sustain the development of superior cultivars. Integrating these key advances with new breeding techniques and improved phenotyping using advanced data analysis platforms will make disease resistance improvement in Brassica species more efficient and responsive to current and future demands.


Assuntos
Brassica , Brassica/genética , Resistência à Doença/genética , Genoma de Planta/genética , Doenças das Plantas/genética , Melhoramento Vegetal , Genômica
5.
Breed Sci ; 73(5): 435-444, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38737917

RESUMO

Two modern high-quality Japanese malting barley cultivars, 'Sukai Golden' and 'Sachiho Golden', were subjected to RNA-sequencing of transcripts extracted from 20-day-old immature seeds. Despite their close relation, 2,419 Sukai Golden-specific and 3,058 Sachiho Golden-specific SNPs were detected in comparison to the genome sequences of two reference cultivars: 'Morex' and 'Haruna Nijo'. Two single nucleotide polymorphism (SNP) clusters respectively showing the incorporation of (1) the barley yellow mosaic virus (BaYMV) resistance gene rym5 from six-row non-malting Chinese landrace Mokusekko 3 on the long arm of 3H, and (2) the anthocyanin-less ant2 gene from a two-row Dutch cultivar on the long arm of 2H were detected specifically in 'Sukai Golden'. Using 221 recombinant inbred lines of a cross between 'Ishukushirazu' and 'Nishinochikara', another BaYMV resistance rym3 gene derived from six-row non-malting Japanese cultivar 'Haganemugi' was mapped to a 0.4-cM interval on the proximal region of 5H. Haplotype analysis of progenitor accessions of the two modern malting cultivars revealed that rym3 of 'Haganemugi' was independently introduced into 'Sukai Golden' and 'Sachiho Golden'. Residual chromosome 5H segments of 'Haganemugi' surrounding rym3 were larger in 'Sukai Golden'. Available results suggest possibilities for malting quality improvement by minimizing residual segments surrounding rym3.

6.
Int J Mol Sci ; 24(3)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36768136

RESUMO

Pinus massoniana Lamb. is a crucial timber and resin conifer in China, but its plantation industry is threatened by outbreaks of pine wilt disease (PWD) caused by Bursaphelenchus xylophilus (pinewood nematode; PWN). However, as of yet, there is no comprehensive analysis of NBS-LRR genes in P. massoniana involved in its defense against PWN. In this study, 507 NBS genes were identified in the transcriptome of resistant and susceptible P. masoniana inoculated with the PWN. The phylogenetic analysis and expression profiles of resistant and susceptible P. massoniana revealed that the up-regulated PmNBS-LRR97 gene was involved in conferring resistance to PWN. The results of real-time quantitative PCR (qRT-PCR) showed that PmNBS-LRR97 was significantly up-regulated after PWN infection, especially in the stems. Subcellular localization indicated that PmNBS-LRR97 located to the cell membrane. PmNBS-LRR97 significantly activated the expression of reactive oxygen species (ROS)-related genes in P. massoniana. In addition, the overexpression of PmNBS-LRR97 was capable of promoting the production of ROS, aiding in plant growth and development. In summary, PmNBS-LRR97 participates in the defense response to PWN and plays an active role in conferring resistance in P. massoniana. This finding provides new insight into the regulatory mechanism of the R gene in P. massoniana.


Assuntos
Pinus , Tylenchida , Animais , Espécies Reativas de Oxigênio , Xylophilus , Pinus/genética , Filogenia , Transcriptoma , Doenças das Plantas/genética , Tylenchida/genética
7.
Mol Genet Genomics ; 297(1): 263-276, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35031863

RESUMO

In this study, genome-wide identification, phylogenetic relationships, duplication time and selective pressure of the NBS-LRR genes, an important group of plant disease-resistance genes (R genes), were performed to uncover their genetic evolutionary patterns in the six Prunus species. A total of 1946 NBS-LRR genes were identified; specifically, 589, 361, 284, 281, 318, and 113 were identified in Prunus yedoensis, P. domestica, P. avium, P. dulcis, P. persica and P. yedoensis var. nudiflora, respectively. Two NBS-LRR gene subclasses, TIR-NBS-LRR (TNL) and non-TIR-NBS-LRR (non-TNL), were also discovered. In total, 435 TNL and 1511 non-TNL genes were identified and could be classified into 30/55/75 and 103/158/191 multi-gene families, respectively, according to three different criteria. Higher Ks and Ka/Ks values were detected in TNL gene families than in non-TNL gene families. These results indicated that the TNL genes had more members involved in relatively ancient duplications and were affected by stronger selection pressure than the non-TNL genes. In general, the NBS-LRR genes were shaped by species-specific duplications, and lineage-specific duplications occurred at recent and relatively ancient periods among the six Prunus species. Therefore, different duplicated copies of NBS-LRRs can resist specific pathogens and will provide an R-gene library for resistance breeding in Prunus species.


Assuntos
Resistência à Doença/genética , Duplicação Gênica , Proteínas de Repetições Ricas em Leucina/genética , Prunus/genética , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Especiação Genética , Genoma de Planta , Família Multigênica , Filogenia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Proteínas de Plantas/genética , Prunus/classificação , Especificidade da Espécie , Fatores de Tempo
8.
Mol Breed ; 42(7): 37, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37309382

RESUMO

Brassica juncea (AABB), Indian mustard, is a source of disease resistance genes for a wide range of pathogens. The availability of reference genome sequences for B. juncea has made it possible to characterise the genomic structure and distribution of these disease resistance genes. Potentially functional disease resistance genes can be identified by co-localization with genetically mapped disease resistance quantitative trait loci (QTL). Here we identify and characterise disease resistance gene analogs (RGAs), including nucleotide-binding site-leucine-rich repeat (NLR), receptor-like kinase (RLK) and receptor-like protein (RLP) classes, and investigate their association with disease resistance QTL intervals. The molecular genetic marker sequences for four white rust (Albugo candida) disease resistance QTL, six blackleg (Leptosphaeria maculans) disease resistance QTL and BjCHI1, a gene cloned from B. juncea for hypocotyl rot disease, were extracted from previously published studies and used to compare with candidate RGAs. Our results highlight the complications for the identification of functional resistance genes, including the duplicated appearance of genetic markers for several resistance loci, including Ac2(t), AcB1-A4.1, AcB1-A5.1, Rlm6 and PhR2 in both the A and B genomes, due to the presence of homoeologous regions. Furthermore, the white rust loci, Ac2(t) and AcB1-A4.1, mapped to the same position on chromosome A04 and may be different alleles of the same gene. Despite these challenges, a total of nine candidate genomic regions hosting 14 RLPs, 28 NLRs and 115 RLKs were identified. This study facilitates the mapping and cloning of functional resistance genes for applications in crop improvement programs. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-022-01309-5.

9.
Int J Mol Sci ; 23(20)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36293072

RESUMO

Cotton is an important economic crop. Fusarium and Verticillium are the primary pathogenic fungi that threaten both the quality and sustainable production of cotton. As an opportunistic pathogen, Fusarium causes various human diseases, including fungal keratitis, which is the most common. Therefore, there is an urgent need to study and clarify the resistance mechanisms of cotton and humans toward Fusarium in order to mitigate, or eliminate, its harm. Herein, we first discuss the resistance and susceptibility mechanisms of cotton to Fusarium and Verticillium wilt and classify associated genes based on their functions. We then outline the characteristics and pathogenicity of Fusarium and describe the multiple roles of human neutrophils in limiting hyphal growth. Finally, we comprehensively compare the similarities and differences between animal and plant resistance to Fusarium and put forward new insights into novel strategies for cotton disease resistance breeding and treatment of Fusarium infection in humans.


Assuntos
Fusarium , Verticillium , Humanos , Fusarium/fisiologia , Doenças das Plantas/microbiologia , Melhoramento Vegetal , Resistência à Doença/genética , Gossypium , Mecanismos de Defesa
10.
Plant J ; 97(4): 646-660, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30407670

RESUMO

The NLR-receptor RPP7 mediates race-specific immunity in Arabidopsis. Previous screens for enhanced downy mildew (edm) mutants identified the co-chaperone SGT1b (EDM1) and the PHD-finger protein EDM2 as critical regulators of RPP7. Here, we describe a third edm mutant compromised in RPP7 immunity, edm3. EDM3 encodes a nuclear-localized protein featuring an RNA-recognition motif. Like EDM2, EDM3 promotes histone H3 lysine 9 dimethylation (H3K9me2) at RPP7. Global profiling of H3K9me2 showed EDM3 to affect this silencing mark at a large set of loci. Importantly, both EDM3 and EDM2 co-associate in vivo with H3K9me2-marked chromatin and transcripts at a critical proximal polyadenylation site of RPP7, where they suppress proximal transcript polyadeylation/termination. Our results highlight the complexity of plant NLR gene regulation, and establish a functional and physical link between a histone mark and NLR-transcript processing.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
11.
Mol Biol Rep ; 47(7): 5403-5409, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32617958

RESUMO

Coriander (Coriandrum sativum L.) is a well-known spice and aromatic crop cultivated globally. Stem gall disease is one of the major constraints for its leaf and seed quality used for consumption and also affecting the yield. The identification of resistance genes and further characterization of such genes could help to understand the molecular basis of resistance and lay a solid ground for cloning of stem gall resistance genes in coriander. To evaluate the genetic expression of disease resistance-relevant genes in popularly grown coriander cultivars in India such as Pant Haritma, Hisar Sugandh, Hisar Surabhi, Hisar Anand, Rajendra Swathi, ACr-1, ACr-2, AgCr-1, CO-2 and CS-6 were used for LRR, GDSL, USP, ANK and PDR gene expression using Real Time PCR along with 18S housekeeping gene as internal control for the normalization. Result revealed the different expression pattern of genes among the cultivars tested. Highest expression was shown in cultivar AgCr-1 followed by Pant Haritma, Hisar Sugandh and ACr-1, and least expression in Hisar Anand, ACr-2, CO-2, Rajendra Swathi and CS-6. Domain analysis revealed the conserved domain relevance of the genes. This is the first report on stem gall resistance gene expression in coriander. The identified genes have a potential role in coriander and further utilize in crop improvement program. We hypothesize that contrasting cultivars can be a good source for candidate gene evaluation and further to use them as potential markers and used in hybridization program focus on incorporating and develop durable disease-resistance into the adapted cultivars of the region.


Assuntos
Coriandrum/genética , Resistência à Doença/genética , Doenças das Plantas/genética , Expressão Gênica/genética , Regulação da Expressão Gênica de Plantas/genética , Índia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Caules de Planta/genética , Caules de Planta/metabolismo , Transcriptoma/genética
12.
Plant Biotechnol J ; 17(2): 540-549, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30107090

RESUMO

Following the molecular characterisation of functional disease resistance genes in recent years, methods to track and verify the integrity of multiple genes in varieties are needed for crop improvement through resistance stacking. Diagnostic resistance gene enrichment sequencing (dRenSeq) enables the high-confidence identification and complete sequence validation of known functional resistance genes in crops. As demonstrated for tetraploid potato varieties, the methodology is more robust and cost-effective in monitoring resistances than whole-genome sequencing and can be used to appraise (trans) gene integrity efficiently. All currently known NB-LRRs effective against viruses, nematodes and the late blight pathogen Phytophthora infestans can be tracked with dRenSeq in potato and hitherto unknown polymorphisms have been identified. The methodology provides a means to improve the speed and efficiency of future disease resistance breeding in crops by directing parental and progeny selection towards effective combinations of resistance genes.


Assuntos
Resistência à Doença/genética , Phytophthora infestans/imunologia , Doenças das Plantas/imunologia , Proteínas de Plantas/genética , Polimorfismo Genético , Solanum tuberosum/genética , Produtos Agrícolas , Melhoramento Vegetal , Doenças das Plantas/parasitologia , Plantas Geneticamente Modificadas , Solanum tuberosum/imunologia , Tetraploidia
13.
Plant Dis ; 103(8): 2100-2107, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31215852

RESUMO

Head smut, caused by the fungus Sporisorium reilianum, is a devastating global disease of maize (Zea mays). In the present study, maize seedlings were artificially inoculated with compatible mating-type strains of S. reilianum by needle inoculation of mesocotyls (NIM) or by soaking inoculation of radicles (SIR). After NIM or SIR, Huangzao4 mesocotyls exhibited severe damage with brownish discoloration and necrosis, whereas Mo17 mesocotyls exhibited few lesions. Fluorescence and electron microscopy showed that S. reilianum infected maize within 0.5 day after SIR and mainly colonized the phloem. With longer incubation, the density of S. reilianum hyphae increased in the vascular bundles, concentrated mainly in the phloem. In Mo17, infected cells exhibited apoptosis-like features, and hyphae became sequestered within dead cells. In contrast, in Huangzao4, pathogen invasion resulted in autophagy that failed to prevent hyphal spreading. The growth of S. reilianum hyphae diminished at 6 days after inoculation when expression of the R genes ZmWAK and ZmNL peaked. Thus, 6 days after SIR inoculation might be an important time for inhibiting the progress of S. reilianum infection in maize. The results of this study will provide a basis for further analysis of the mechanisms of maize resistance to S. reilianum.


Assuntos
Resistência à Doença , Regulação da Expressão Gênica de Plantas , Ustilaginales , Zea mays , Resistência à Doença/genética , Hifas , Doenças das Plantas/microbiologia , Ustilaginales/citologia , Zea mays/citologia , Zea mays/genética , Zea mays/microbiologia
14.
Int J Mol Sci ; 20(13)2019 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-31248042

RESUMO

Disease resistance genes encoding proteins with nucleotide binding sites and Leucine-Rich Repeat (NB-LRR) domains include many members involved in the effector-triggered immunity pathway in plants. The transcript levels of these defense genes are negatively regulated by diverse microRNAs (miRNAs) in angiosperms and gymnosperms. In wheat, using small RNA expression datasets and degradome datasets, we identified five miRNA families targeting NB-LRR defense genes in monocots, some of which arose in the Triticeae species era. These miRNAs regulate different types of NB-LRR genes, most of them with coil-coiled domains, and trigger the generation of secondary small interfering RNAs (siRNA) as a phased pattern in the target site regions. In addition to acting in response to biotic stresses, they are also responsive to abiotic stresses such as heat, drought, salt, and light stress. Their copy number and expression variation in Triticeae suggest a rapid birth and death frequency. Altogether, non-conserved miRNAs as conserved transcriptional regulators in gymnosperms and angiosperms regulating the disease resistance genes displayed quick plasticity including the variations of sequences, gene copy number, functions, and expression level, which accompanied with NB-LRR genes may be tune-regulated to plants in natural environments with various biotic and abiotic stresses.


Assuntos
Resistência à Doença/genética , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Interações Hospedeiro-Patógeno/genética , MicroRNAs/genética , Poaceae/genética , Sítios de Ligação , Perfilação da Expressão Gênica , MicroRNAs/química , Motivos de Nucleotídeos , Filogenia , Poaceae/classificação , Matrizes de Pontuação de Posição Específica , Interferência de RNA , Estresse Fisiológico , Triticum/genética
15.
BMC Genomics ; 19(1): 128, 2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29422035

RESUMO

BACKGROUND: Plant disease resistance (R) genes are evolving rapidly and play a critical role in the innate immune system of plants. The nucleotide binding sites-leucine rich repeat (NBS-LRR) genes are one of the largest classes in plant R genes. Previous studies have focused on the NBS-LRR genes from one or several species of different genera, and the sequenced genomes of the genus Fragaria offer the opportunity to study the evolutionary processes of these R genes among the closely related species. RESULTS: In this study, 325, 155, 190, 187, and 133 NBS-LRRs were discovered from F. x ananassa, F. iinumae, F. nipponica, F. nubicola, and F. orientalis, respectively. Together with the 144 NBS-LRR genes from F. vesca, a total of 1134 NBS-LRRs containing 866 multi-genes comprised 184 gene families across the six Fragaria genomes. Extremely short branch lengths and shallow nodes were widely present in the phylogenetic tree constructed with all of the NBS-LRR genes of the six strawberry species. The identities of the orthologous genes were highly significantly greater than those of the paralogous genes, while the Ks ratios of the former were very significantly lower than those of the latter in all of the NBS-LRR gene families. In addition, the Ks and Ka/Ks values of the TIR-NBS-LRR genes (TNLs) were significantly greater than those of the non-TIR-NBS-LRR genes (non-TNLs). Furthermore, the expression patterns of the NBS-LRR genes revealed that the same gene expressed differently under different genetic backgrounds in response to pathogens. CONCLUSIONS: These results, combined with the shared hotspot regions of the duplicated NBS-LRRs on the chromosomes, indicated that the lineage-specific duplication of the NBS-LRR genes occurred before the divergence of the six Fragaria species. The Ks and Ka/Ks ratios suggested that the TNLs are more rapidly evolving and driven by stronger diversifying selective pressures than the non-TNLs.


Assuntos
Resistência à Doença/genética , Fragaria/genética , Duplicação Gênica , Ligação Genética , Proteínas de Plantas/genética , Evolução Biológica , Mapeamento Cromossômico , Biologia Computacional/métodos , Bases de Dados Genéticas , Fragaria/classificação , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno/genética , Família Multigênica , Filogenia , Doenças das Plantas/etiologia , Doenças das Plantas/genética , Especificidade da Espécie , Transcriptoma
16.
Mol Genet Genomics ; 293(1): 17-31, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28900732

RESUMO

STAND P-loop NTPase is the common weapon used by plant and other organisms from all three kingdoms of life to defend themselves against pathogen invasion. The purpose of this study is to review comprehensively the latest finding of plant STAND P-loop NTPase related to their genomic distribution, evolution, and their mechanism of action. Earlier, the plant STAND P-loop NTPase known to be comprised of only NBS-LRRs/AP-ATPase/NB-ARC ATPase. However, recent finding suggests that genome of early green plants comprised of two types of STAND P-loop NTPases: (1) mammalian NACHT NTPases and (2) NBS-LRRs. Moreover, YchF (unconventional G protein and members of P-loop NTPase) subfamily has been reported to be exceptionally involved in biotic stress (in case of Oryza sativa), thereby a novel member of STAND P-loop NTPase in green plants. The lineage-specific expansion and genome duplication events are responsible for abundance of plant STAND P-loop NTPases; where "moderate tandem and low segmental duplication" trajectory followed in majority of plant species with few exception (equal contribution of tandem and segmental duplication). Since the past decades, systematic research is being investigated into NBS-LRR function supported the direct recognition of pathogen or pathogen effectors by the latest models proposed via 'integrated decoy' or 'sensor domains' model. Here, we integrate the recently published findings together with the previous literature on the genomic distribution, evolution, and distinct models proposed for functional molecular mechanism of plant STAND P-loop NTPases.


Assuntos
Proteínas AAA/genética , Resistência à Doença/genética , Evolução Molecular , Genoma de Planta/genética , Adenosina Trifosfatases/genética , Genômica , Oryza/enzimologia , Oryza/genética , Filogenia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Homologia de Sequência de Aminoácidos
17.
Plant Cell Rep ; 35(8): 1629-53, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27289592

RESUMO

KEY MESSAGE: Single nucleotide polymorphism in sugar pathway and disease resistance genes showing genetic association with sugar content and red rot resistance would be useful in marker-assisted genetic improvement of sugarcane. Validation and genotyping of potential sequence variants in candidate genes are necessary to understand their functional significance and trait association potential. We discovered, characterized, validated and genotyped SNPs and InDels in sugar pathway and disease resistance genes of Saccharum complex and sugarcane varieties using amplicon sequencing and CAPS assays. The SNPs were abundant in the non-coding 3'UTRs than 5'UTRs and coding sequences depicting a strong bias toward C to T transition substitutions than transversions. Sequencing of cloned amplicons validated 61.6 and 45.2 % SNPs detected in silico in 21 sugar pathway and 16 disease resistance genes, respectively. Sixteen SNPs in four sugar pathway genes and 10 SNPs in nine disease resistance genes were validated through cost-effective CAPS assay. Functional and adaptive significance of SNP and protein haplotypes identified in sugar pathway and disease resistance genes was assessed by correlating their allelic variation with missense amino acid substitutions in the functional domains, alteration in protein structure models and possible modulation of catalytic enzyme activity in contrasting high and low sugar and moderately red rot resistant and highly susceptible sugarcane genotypes. A strong genetic association of five SNPs in the sugar pathway and disease resistance genes, and an InDel marker in the promoter sequence of sucrose synthase-2 gene, with sugar content and red rot resistance, was evident. The functionally relevant SNPs and InDels, detected and validated in sugar pathway and disease resistance genes, and genic CAPS markers designed, would be of immense use in marker-assisted genetic improvement of sugarcane for sugar content and disease resistance.


Assuntos
Metabolismo dos Carboidratos/genética , Resistência à Doença/genética , Genes de Plantas , Polimorfismo de Nucleotídeo Único/genética , Saccharum/genética , Sequência de Bases , Perfilação da Expressão Gênica , Marcadores Genéticos , Técnicas de Genotipagem , Haplótipos/genética , Mutação INDEL , Doenças das Plantas/genética , Reprodutibilidade dos Testes , Alinhamento de Sequência
18.
Sci Rep ; 14(1): 20601, 2024 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-39232097

RESUMO

DEFENSE NO DEATH 1 (DND1) is a cyclic nucleotide-gated ion channel protein. Earlier, it was shown that the silencing of DND1 in the potato (Solanum tuberosum L.) leads to resistance to late blight, powdery mildew, and gray mold diseases. At the same time, however, it can reduce plant growth and cause leaf necrosis. To obtain knowledge of the molecular events behind the pleiotropic effect of DND1 downregulation in the potato, metabolite and transcriptome analyses were performed on three DND1 silenced lines of the cultivar 'Désirée.' A massive increase in the salicylic acid content of leaves was detected. Concentrations of jasmonic acid and chlorogenic acid and their derivatives were also elevated. Expression of 1866 genes was altered in the same way in all three DND1 silenced lines, including those related to the synthesis of secondary metabolites. The activation of several alleles of leaf rust, late blight, and other disease resistance genes, as well as the induction of pathogenesis-related genes, was detected. WRKY and NAC transcription factor families were upregulated, whereas bHLHs were downregulated, indicating their central role in transcriptome changes. These results suggest that the maintenance of the constitutive defense state leads to the reduced growth of DND1 silenced potato plants.


Assuntos
Ciclopentanos , Regulação da Expressão Gênica de Plantas , Folhas de Planta , Proteínas de Plantas , Solanum tuberosum , Transcriptoma , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ciclopentanos/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Inativação Gênica , Resistência à Doença/genética , Reguladores de Crescimento de Plantas/metabolismo , Oxilipinas/metabolismo , Perfilação da Expressão Gênica , Ácido Salicílico/metabolismo , Metabolismo Secundário/genética
19.
G3 (Bethesda) ; 14(6)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38325326

RESUMO

European hazelnut (Corylus avellana L.) is an important tree nut crop. Hazelnut production in North America is currently limited in scalability due to Anisogramma anomala, a fungal pathogen that causes Eastern Filbert Blight (EFB) disease in hazelnut. Successful deployment of EFB resistant cultivars has been limited to the state of Oregon, where the breeding program at Oregon State University (OSU) has released cultivars with a dominant allele at a single resistance locus identified by classical breeding, linkage mapping, and molecular markers. C. avellana cultivar "Jefferson" is resistant to the predominant EFB biotype in Oregon and has been selected by the OSU breeding program as a model for hazelnut genetic and genomic research. Here, we present a near complete, haplotype-resolved chromosome-level hazelnut genome assembly for "Jefferson". This new assembly is a significant improvement over a previously published genome draft. Analysis of genomic regions linked to EFB resistance and self-incompatibility confirmed haplotype splitting and identified new gene candidates that are essential for downstream molecular marker development, thereby facilitating breeding efforts.


Assuntos
Corylus , Resistência à Doença , Haplótipos , Doenças das Plantas , Corylus/genética , Corylus/microbiologia , Resistência à Doença/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Anotação de Sequência Molecular , Genoma de Planta , Cromossomos de Plantas/genética , Mapeamento Cromossômico
20.
Front Plant Sci ; 14: 1143111, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37143876

RESUMO

Legumes comprise one of the world's largest, most diverse, and economically important plant families, known for their nutritional and medicinal benefits. Legumes are susceptible to a wide range of diseases, similar to other agricultural crops. Diseases have a considerable impact on the production of legume crop species, resulting in large yield losses worldwide. Due to continuous interactions between plants and their pathogens in the environment and the evolution of new pathogens under high selection pressure; disease resistant genes emerge in plant cultivars in the field against those pathogens or disease. Thus, disease resistant genes play critical roles in plant resistance responses, and their discovery and subsequent use in breeding programmes aid in reducing yield loss. The genomic era, with its high-throughput and low-cost genomic tools, has revolutionised our understanding of the complex interactions between legumes and pathogens, resulting in the identification of several critical participants in both the resistant and susceptible relationships. However, a substantial amount of existing information about numerous legume species has been disseminated as text or is preserved across fractions in different databases, posing a challenge for researchers. As a result, the range, scope, and complexity of these resources pose challenges to those who manage and use them. Therefore, there is an urgent need to develop tools and a single conjugate database to manage genetic information for the world's plant genetic resources, allowing for the rapid incorporation of essential resistance genes into breeding strategies. Here, developed the first comprehensive database of disease resistance genes named as LDRGDb - LEGUMES DISEASE RESISTANCE GENES DATABASE comprises 10 legumes [Pigeon pea (Cajanus cajan), Chickpea (Cicer arietinum), Soybean (Glycine max), Lentil (Lens culinaris), Alfalfa (Medicago sativa), Barrelclover (Medicago truncatula), Common bean (Phaseolus vulgaris), Pea (Pisum sativum),Faba bean (Vicia faba), and Cowpea (Vigna unguiculata)]. The LDRGDb is a user-friendly database developed by integrating a variety of tools and software that combine knowledge about resistant genes, QTLs, and their loci, with proteomics, pathway interactions, and genomics (https://ldrgdb.in/).

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa