Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Dairy Sci ; 107(2): 1022-1034, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37730178

RESUMO

Genetic selection could be a tool to help improve the health and welfare of calves; however, to date, there is limited research on the genetics of calfhood diseases. This study aimed to understand the current impact of calf diseases, by investigating incidence rates, estimating genetic parameters, and providing industry recommendations to improve calf disease recording practices on farms. Available calf disease data composed of 69,695 Holstein calf disease records for respiratory problems (RESP) and diarrhea (DIAR), from 62,361 calves collected on 1,617 Canadian dairy herds from 2006 to 2021. Single- and multiple-trait analysis using both a threshold and linear animal model for each trait were evaluated. Furthermore, each trait was analyzed using 2 scenarios with respect to minimum disease incidence threshold criterion (herd-year incidence of at least 1% and 5%) to highlight the effect of different filtering thresholds on selection potential. Observed scale heritability estimates for RESP and DIAR ranged from 0.02 to 0.07 across analyses, while estimated genetic correlations between the traits ranged from 0.50 to 0.62. Sires were compared based on their estimated breeding value and their diseased daughter incidence rates. On average, calves born to the bottom 10% of sires were 1.8 times more likely to develop RESP and 1.9 times to develop DIAR compared with daughters born to the top 10% of sires. Results from the current study are promising for the inclusion of both DIAR and RESP in Canadian genetic evaluations. However, for effective genetic evaluation, standardized approaches on data collection and industry outreach to highlight the importance of collecting and uploading this information to herd management software is required. In particular, it is important that the herd management software is accessible to the national milk recording system to allow for use in national genetic evaluation.


Assuntos
Doenças dos Bovinos , Leite , Animais , Bovinos/genética , Canadá , Fenótipo , Doenças dos Bovinos/genética , Doenças dos Bovinos/epidemiologia , Diarreia/veterinária , Seleção Genética , Indústria de Laticínios/métodos
2.
J Dairy Sci ; 106(2): 1190-1205, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36460501

RESUMO

Claw diseases and mastitis represent the most important disease traits in dairy cattle with increasing incidences and a frequently mentioned connection to milk yield. Yet, many studies aimed to detect the genetic background of both trait complexes via fine-mapping of quantitative trait loci. However, little is known about genomic regions that simultaneously affect milk production and disease traits. For this purpose, several tools to detect local genetic correlations have been developed. In this study, we attempted a detailed analysis of milk production and disease traits as well as their interrelationship using a sample of 34,497 50K genotyped German Holstein cows with milk production and claw and udder disease traits records. We performed a pedigree-based quantitative genetic analysis to estimate heritabilities and genetic correlations. Additionally, we generated GWAS summary statistics, paying special attention to genomic inflation, and used these data to identify shared genomic regions, which affect various trait combinations. The heritability on the liability scale of the disease traits was low, between 0.02 for laminitis and 0.19 for interdigital hyperplasia. The heritabilities for milk production traits were higher (between 0.27 for milk energy yield and 0.48 for fat-protein ratio). Global genetic correlations indicate the shared genetic effect between milk production and disease traits on a whole genome level. Most of these estimates were not significantly different from zero, only mastitis showed a positive one to milk (0.18) and milk energy yield (0.13), as well as a negative one to fat-protein ratio (-0.07). The genomic analysis revealed significant SNPs for milk production traits that were enriched on Bos taurus autosome 5, 6, and 14. For digital dermatitis, we found significant hits, predominantly on Bos taurus autosome 5, 10, 22, and 23, whereas we did not find significantly trait-associated SNPs for the other disease traits. Our results confirm the known genetic background of disease and milk production traits. We further detected 13 regions that harbor strong concordant effects on a trait combination of milk production and disease traits. This detailed investigation of genetic correlations reveals additional knowledge about the localization of regions with shared genetic effects on these trait complexes, which in turn enables a better understanding of the underlying biological pathways and putatively the utilization for a more precise design of breeding schemes.


Assuntos
Doenças dos Bovinos , Mastite , Feminino , Bovinos/genética , Animais , Leite/metabolismo , Lactação/genética , Glândulas Mamárias Animais , Fenótipo , Locos de Características Quantitativas , Genômica , Mastite/genética , Mastite/veterinária , Doenças dos Bovinos/epidemiologia
3.
Hum Mutat ; 43(12): 2033-2053, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36054313

RESUMO

Xia-Gibbs syndrome (XGS; MIM# 615829) is a rare mendelian disorder characterized by Development Delay (DD), intellectual disability (ID), and hypotonia. Individuals with XGS typically harbor de novo protein-truncating mutations in the AT-Hook DNA binding motif containing 1 (AHDC1) gene, although some missense mutations can also cause XGS. Large de novo heterozygous deletions that encompass the AHDC1 gene have also been ascribed as diagnostic for the disorder, without substantial evidence to support their pathogenicity. We analyzed 19 individuals with large contiguous deletions involving AHDC1, along with other genes. One individual bore the smallest known contiguous AHDC1 deletion (∼350 Kb), encompassing eight other genes within chr1p36.11 (Feline Gardner-Rasheed, IFI6, FAM76A, STX12, PPP1R8, THEMIS2, RPA2, SMPDL3B) and terminating within the first intron of AHDC1. The breakpoint junctions and phase of the deletion were identified using both short and long read sequencing (Oxford Nanopore). Quantification of RNA expression patterns in whole blood revealed that AHDC1 exhibited a mono-allelic expression pattern with no deficiency in overall AHDC1 expression levels, in contrast to the other deleted genes, which exhibited a 50% reduction in mRNA expression. These results suggest that AHDC1 expression in this individual is compensated by a novel regulatory mechanism and advances understanding of mutational and regulatory mechanisms in neurodevelopmental disorders.


Assuntos
Anormalidades Múltiplas , Deficiência Intelectual , Anormalidades Musculoesqueléticas , Transtornos do Neurodesenvolvimento , Humanos , Anormalidades Múltiplas/genética , Proteínas de Ligação a DNA/genética , Endorribonucleases , Deficiência Intelectual/genética , Transtornos do Neurodesenvolvimento/genética , Fosfoproteínas Fosfatases , Proteínas Qa-SNARE , Proteínas de Ligação a RNA , Esfingomielina Fosfodiesterase
4.
J Mol Cell Cardiol ; 133: 233-246, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31175858

RESUMO

Bicuspid aortic valve (BAV) arises during valvulogenesis when 2 leaflets/cusps of the aortic valve (AOV) are fused together. Its clinical manifestations pertain to faulty AOV function, the associated aortopathy, and other complications surveyed in Part 1 of the present bipartite-series. Part 2 examines mainly genetic and epigenetic causes of BAV and BAV-associated aortopathies (BAVAs) and disease syndromes (BAVD). Part 1 explored the heterogeneity among subsets of patients with BAV and BAVA/BAVD, and investigated abnormal fluid dynamic stress and strain patterns sustained by the cusps. Specific BAV morphologies engender systolic outflow asymmetries, associated with abnormal aortic regional wall-shear-stress distributions and the expression/localization of BAVAs. Understanding fluid dynamic factors besides the developmental mechanisms and underlying genetics governing these congenital anomalies is necessary to explain patient predisposition to aortopathy and phenotypic heterogeneity. BAV aortopathy entails complex/multifactorial pathophysiology, involving alterations in genetics, epigenetics, hemodynamics, and in cellular and molecular pathways. There is always an interdependence between organismic developmental signals and genes-no systemic signals, no gene-expression; no active gene, no next step. An apposite signal induces the expression of the next developmental gene, which needs be expressed to trigger the next signal, and so on. Hence, embryonic, then post-partum, AOV and thoracic aortic development comprise cascades of developmental genes and their regulation. Interdependencies between them arise, entailing reciprocal/cyclical mutual interactions and adaptive feedback loops, by which developmental morphogenetic processes self-correct responding to environmental inputs/reactions. This Survey can serve as a reference point and driver for further pluridisciplinary BAV/BAVD studies and their clinical translation.


Assuntos
Aneurisma da Aorta Torácica/genética , Aneurisma da Aorta Torácica/patologia , Valva Aórtica/anormalidades , Doenças das Valvas Cardíacas/genética , Doenças das Valvas Cardíacas/patologia , Animais , Valva Aórtica/patologia , Doença da Válvula Aórtica Bicúspide , Epigênese Genética , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Padrões de Herança , Camundongos , Fenótipo , Transcriptoma
5.
Genet Med ; 21(4): 798-812, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30655598

RESUMO

Identifying genes and variants contributing to rare disease phenotypes and Mendelian conditions informs biology and medicine, yet potential phenotypic consequences for variation of >75% of the ~20,000 annotated genes in the human genome are lacking. Technical advances to assess rare variation genome-wide, particularly exome sequencing (ES), enabled establishment in the United States of the National Institutes of Health (NIH)-supported Centers for Mendelian Genomics (CMGs) and have facilitated collaborative studies resulting in novel "disease gene" discoveries. Pedigree-based genomic studies and rare variant analyses in families with suspected Mendelian conditions have led to the elucidation of hundreds of novel disease genes and highlighted the impact of de novo mutational events, somatic variation underlying nononcologic traits, incompletely penetrant alleles, phenotypes with high locus heterogeneity, and multilocus pathogenic variation. Herein, we highlight CMG collaborative discoveries that have contributed to understanding both rare and common diseases and discuss opportunities for future discovery in single-locus Mendelian disorder genomics. Phenotypic annotation of all human genes; development of bioinformatic tools and analytic methods; exploration of non-Mendelian modes of inheritance including reduced penetrance, multilocus variation, and oligogenic inheritance; construction of allelic series at a locus; enhanced data sharing worldwide; and integration with clinical genomics are explored. Realizing the full contribution of rare disease research to functional annotation of the human genome, and further illuminating human biology and health, will lay the foundation for the Precision Medicine Initiative.


Assuntos
Doenças Genéticas Inatas/genética , Heterogeneidade Genética , Genoma Humano/genética , Genômica/tendências , Bases de Dados Genéticas , Predisposição Genética para Doença , Humanos , National Institutes of Health (U.S.) , Linhagem , Estados Unidos , Sequenciamento do Exoma/métodos
6.
Genet Med ; 20(12): 1528-1537, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29790871

RESUMO

PURPOSE: Multilocus variation-pathogenic variants in two or more disease genes-can potentially explain the underlying genetic basis for apparent phenotypic expansion in cases for which the observed clinical features extend beyond those reported in association with a "known" disease gene. METHODS: Analyses focused on 106 patients, 19 for whom apparent phenotypic expansion was previously attributed to variation at known disease genes. We performed a retrospective computational reanalysis of whole-exome sequencing data using stringent Variant Call File filtering criteria to determine whether molecular diagnoses involving additional disease loci might explain the observed expanded phenotypes. RESULTS: Multilocus variation was identified in 31.6% (6/19) of families with phenotypic expansion and 2.3% (2/87) without phenotypic expansion. Intrafamilial clinical variability within two families was explained by multilocus variation identified in the more severely affected sibling. CONCLUSION: Our findings underscore the role of multiple rare variants at different loci in the etiology of genetically and clinically heterogeneous cohorts. Intrafamilial phenotypic and genotypic variability allowed a dissection of genotype-phenotype relationships in two families. Our data emphasize the critical role of the clinician in diagnostic genomic analyses and demonstrate that apparent phenotypic expansion may represent blended phenotypes resulting from pathogenic variation at more than one locus.


Assuntos
Estudos de Associação Genética , Doenças Genéticas Inatas/genética , Variação Genética , Patologia Molecular , Pré-Escolar , Exoma/genética , Feminino , Doenças Genéticas Inatas/patologia , Genótipo , Heterozigoto , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Recém-Nascido , Masculino , Mutação , Linhagem , Fenótipo , Sequenciamento do Exoma
7.
J Child Psychol Psychiatry ; 55(10): 1068-87, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25132410

RESUMO

BACKGROUND: Despite evidence from twin and family studies for an important contribution of genetic factors to both childhood and adult onset psychiatric disorders, identifying robustly associated specific DNA variants has proved challenging. In the pregenomics era the genetic architecture (number, frequency and effect size of risk variants) of complex genetic disorders was unknown. Empirical evidence for the genetic architecture of psychiatric disorders is emerging from the genetic studies of the last 5 years. METHODS AND SCOPE: We review the methods investigating the polygenic nature of complex disorders. We provide mini-guides to genomic profile (or polygenic) risk scoring and to estimation of variance (or heritability) from common SNPs; a glossary of key terms is also provided. We review results of applications of the methods to psychiatric disorders and related traits and consider how these methods inform on missing heritability, hidden heritability and still-missing heritability. FINDINGS: Genome-wide genotyping and sequencing studies are providing evidence that psychiatric disorders are truly polygenic, that is they have a genetic architecture of many genetic variants, including risk variants that are both common and rare in the population. Sample sizes published to date are mostly underpowered to detect effect sizes of the magnitude presented by nature, and these effect sizes may be constrained by the biological validity of the diagnostic constructs. CONCLUSIONS: Increasing the sample size for genome wide association studies of psychiatric disorders will lead to the identification of more associated genetic variants, as already found for schizophrenia. These loci provide the starting point of functional analyses that might eventually lead to new prevention and treatment options and to improved biological validity of diagnostic constructs. Polygenic analyses will contribute further to our understanding of complex genetic traits as sample sizes increase and as sample resources become richer in phenotypic descriptors, both in terms of clinical symptoms and of nongenetic risk factors.


Assuntos
Técnicas Genéticas , Transtornos Mentais/genética , Herança Multifatorial/genética , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Humanos , Polimorfismo de Nucleotídeo Único/genética , Fatores de Risco
8.
Front Psychiatry ; 11: 539, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32670102

RESUMO

A widely replicated finding across the behavioral sciences is that antisocial behaviors correlate with an array of health problems. Less clear, however, is the precise nature of this association. There is reason to suspect that a direct causal link exists between incarceration-a consequence of some antisocial behaviors-and certain negative health outcomes, for instance. However, it might be the case that broader phenotypes like antisocial behavior may correlate with certain health and physiological traits at a genomic level. We explore this possibility from a theoretical vantage point, while also presenting some preliminary data from existing secondary sources. Tentatively, no significant genetic correlations emerged across a host of health, physiological, and wellbeing outcomes after correction for multiple testing. However, more work is needed exploring this topic. We propose that future studies should make use of larger, more diverse samples and examine the genetic overlap between homogeneous clusters of antisocial behavioral subtypes and disease traits or symptoms.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa