Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Proc Natl Acad Sci U S A ; 115(45): 11567-11572, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30348779

RESUMO

Whole-exome sequencing has been successful in identifying genetic factors contributing to familial or sporadic Parkinson's disease (PD). However, this approach has not been applied to explore the impact of de novo mutations on PD pathogenesis. Here, we sequenced the exomes of 39 early onset patients, their parents, and 20 unaffected siblings to investigate the effects of de novo mutations on PD. We identified 12 genes with de novo mutations (MAD1L1, NUP98, PPP2CB, PKMYT1, TRIM24, CEP131, CTTNBP2, NUS1, SMPD3, MGRN1, IFI35, and RUSC2), which could be functionally relevant to PD pathogenesis. Further analyses of two independent case-control cohorts (1,852 patients and 1,565 controls in one cohort and 3,237 patients and 2,858 controls in the other) revealed that NUS1 harbors significantly more rare nonsynonymous variants (P = 1.01E-5, odds ratio = 11.3) in PD patients than in controls. Functional studies in Drosophila demonstrated that the loss of NUS1 could reduce the climbing ability, dopamine level, and number of dopaminergic neurons in 30-day-old flies and could induce apoptosis in fly brain. Together, our data suggest that de novo mutations could contribute to early onset PD pathogenesis and identify NUS1 as a candidate gene for PD.


Assuntos
Encéfalo/metabolismo , Neurônios Dopaminérgicos/metabolismo , Mutação , Proteínas do Tecido Nervoso/genética , Doença de Parkinson/genética , Receptores de Superfície Celular/genética , Adulto , Idade de Início , Animais , Apoptose/genética , Translocador Nuclear Receptor Aril Hidrocarboneto/antagonistas & inibidores , Translocador Nuclear Receptor Aril Hidrocarboneto/genética , Translocador Nuclear Receptor Aril Hidrocarboneto/metabolismo , Sequência de Bases , Encéfalo/patologia , Estudos de Casos e Controles , Estudos de Coortes , Modelos Animais de Doenças , Dopamina/metabolismo , Neurônios Dopaminérgicos/patologia , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Diagnóstico Precoce , Feminino , Expressão Gênica , Redes Reguladoras de Genes , Humanos , Masculino , Proteínas do Tecido Nervoso/metabolismo , Pais , Doença de Parkinson/diagnóstico , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptores de Superfície Celular/metabolismo , Irmãos
2.
Eur Heart J ; 40(41): 3385-3392, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31228190

RESUMO

AIMS: Efficacy of aspirin in primary prevention of cardiovascular disease (CVD) may be influenced by a common allele in guanylate cyclase GUCY1A3, which has been shown to modify platelet function and increase CVD risk. METHODS AND RESULTS: We investigated whether homozygotes of the GUCY1A3 rs7692387 risk (G) allele benefited from aspirin in two long-term, randomized placebo-controlled trials of aspirin in primary CVD prevention: the Women's Genome Health Study (WGHS, N = 23 294) and a myocardial infarction (MI, N = 550) and stroke (N = 382) case-control set from the Physician's Health Study (PHS, N = 22 071). Bleeding risk was evaluated in the WGHS. In the placebo group of the WGHS, the GUCY1A3 risk (G) allele was confirmed to increase CVD risk [hazard ratio 1.38; 95% confidence interval (CI) 1.08-1.78; P = 0.01]. Random-effects meta-analysis of the WGHS and PHS revealed that aspirin reduced CVD events among risk allele homozygotes [G/G: odds ratio (OR) 0.79; 95% CI 0.65-0.97; P = 0.03] but increased CVD events among non-risk allele carriers (e.g. G/A: OR 1.39; 95% CI 1.03-1.87; P = 0.03) thus implying an interaction between genotype stratum and aspirin intake (Pinteraction = 0.01). Bleeding associated with aspirin increased in all genotype groups, with higher risks in heterozygotes. CONCLUSION: In two randomized placebo-controlled trials in the setting of primary prevention, aspirin reduced the incidence of CVD events in individuals homozygous for the GUCY1A3 risk (G) allele, whereas heterozygote individuals had more events when taking aspirin.


Assuntos
Aspirina , Doenças Cardiovasculares , Doença da Artéria Coronariana , Guanilil Ciclase Solúvel/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Aspirina/efeitos adversos , Aspirina/uso terapêutico , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/prevenção & controle , Doença da Artéria Coronariana/epidemiologia , Doença da Artéria Coronariana/genética , Feminino , Predisposição Genética para Doença/epidemiologia , Predisposição Genética para Doença/genética , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , Prevenção Primária
3.
Genomics ; 111(4): 590-597, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-29627504

RESUMO

Complex diseases, such as obesity, type II diabetes and chronic obstructive pulmonary disease (COPD) as metabolic disorder-related diseases are major concern for worldwide public health in the 21st century. The identification of these disease risk genes has attracted increasing interest in computational systems biology. In this paper, a novel method was proposed to prioritize disease risk genes (PDRG) by integrating functional annotations, protein interactions and gene expression information to assess similarity between genes in a disease-related metabolic network. The gene prioritization method was successfully carried out for obesity and COPD, the effectiveness of which was superior to those of ToppGene and ToppNet in both literature validation and recall rate by LOOCV. Our method could be applied broadly to other metabolism-related diseases, helping to prioritize novel disease risk genes, and could shed light on diagnosis and effective therapies.


Assuntos
Diabetes Mellitus/genética , Estudo de Associação Genômica Ampla/métodos , Síndrome Metabólica/genética , Herança Multifatorial , Obesidade/genética , Doença Pulmonar Obstrutiva Crônica/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla/normas , Humanos
4.
Genes (Basel) ; 14(10)2023 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-37895194

RESUMO

Alzheimer's disease (AD) is the most common form of dementia, accounting for approximately 38.5 million cases of all-cause dementia. Over 60% of these individuals live in low- and middle-income countries and are the worst affected, especially by its deleterious effects on the productivity of both patients and caregivers. Numerous risk factors for the disease have been identified and our understanding of gene-environment interactions have shed light on several gene variants that contribute to the most common, sporadic form of AD. Microglial cells, the innate immune cells of the central nervous system (CNS), have long been established as guardians of the brain by providing neuroprotection and maintaining cellular homeostasis. A protein with a myriad of effects on various important signaling pathways that is expressed in microglia is the Src Homology 2 (SH2) domain-containing Inositol 5' Phosphatase 1 (SHIP1) protein. Encoded by the INPP5D (Inositol Polyphosphate-5-Phosphatase D) gene, SHIP1 has diminutive effects on most microglia signaling processes. Polymorphisms of the INPP5D gene have been found to be associated with a significantly increased risk of AD. Several studies have elucidated mechanistic processes by which SHIP1 exerts its perturbations on signaling processes in peripheral immune cells. However, current knowledge of the controllers of INPP5D/SHIP1 expression and the idiosyncrasies of its influences on signaling processes in microglia and their relevance to AD pathophysiology is limited. In this review, we summarize these discoveries and discuss the potential of leveraging INPP5D/SHIP1 as a therapeutic target for Alzheimer's disease.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/genética , Encéfalo/metabolismo , Microglia/metabolismo , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Inositol , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/genética , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/metabolismo
5.
Neurobiol Aging ; 71: 266.e11-266.e24, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30078640

RESUMO

SORL1 encodes a 250-kDa protein named sorLA, a functional sorting receptor for the amyloid precursor protein (APP). Several single nucleotide polymorphisms of the gene SORL1, encoding sorLA, are genetically associated with Alzheimer's disease (AD). In the existing literature, SORL1 is insufficiently described at the transcriptional level, and there is very limited amount of functional data defining different transcripts. We have characterized a SORL1 transcript containing a novel exon 30B. The transcript is expressed in most brain regions with highest expression in the temporal lobe and hippocampus. Exon 30B is spliced to exon 31, leading to a mature transcript that encodes an 829 amino acid sorLA receptor. This receptor variant lacks the binding site for APP and is unlikely to function in APP sorting. This transcript is expressed in equal amounts in the cerebellum from AD and non-AD individuals. Our data describe a transcript that encodes a truncated sorLA receptor, suggesting novel neuronal functions for sorLA and that alternative transcription provides a mechanism for SORL1 activity regulation.


Assuntos
Doença de Alzheimer/genética , Encéfalo/metabolismo , Proteínas Relacionadas a Receptor de LDL/genética , Proteínas de Membrana Transportadoras/genética , Idoso , Doença de Alzheimer/metabolismo , Linhagem Celular , Éxons , Feminino , Predisposição Genética para Doença , Humanos , Proteínas Relacionadas a Receptor de LDL/metabolismo , Masculino , Proteínas de Membrana Transportadoras/metabolismo , Neurônios/metabolismo , Polimorfismo de Nucleotídeo Único , Fatores de Risco , Análise de Sequência de DNA
6.
Genetics ; 204(4): 1587-1600, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27754856

RESUMO

Schizophrenia is a severe mental disorder with a large genetic component. Recent genome-wide association studies (GWAS) have identified many schizophrenia-associated common variants. For most of the reported associations, however, the underlying biological mechanisms are not clear. The critical first step for their elucidation is to identify the most likely disease genes as the source of the association signals. Here, we describe a general computational framework of post-GWAS analysis for complex disease gene prioritization. We identify 132 putative schizophrenia risk genes in 76 risk regions spanning 120 schizophrenia-associated common variants, 78 of which have not been recognized as schizophrenia disease genes by previous GWAS. Even more significantly, 29 of them are outside the risk regions, likely under regulation of transcriptional regulatory elements contained therein. These putative schizophrenia risk genes are transcriptionally active in both brain and the immune system, and highly enriched among cellular pathways, consistent with leading pathophysiological hypotheses about the pathogenesis of schizophrenia. With their involvement in distinct biological processes, these putative schizophrenia risk genes, with different association strengths, show distinctive temporal expression patterns, and play specific biological roles during brain development.


Assuntos
Loci Gênicos , Predisposição Genética para Doença , Esquizofrenia/genética , Estudo de Associação Genômica Ampla , Humanos , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa