Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Rev Cardiovasc Med ; 24(9): 261, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39076380

RESUMO

Background: In this review, we introduce the displacement encoding with stimulated echoes (DENSE) method for measuring myocardial dyssynchrony using cardiovascular magnetic resonance (CMR) imaging. We provide an overview of research findings related to DENSE from the past two decades and discuss other techniques used for dyssynchrony evaluation. Additionally, the review discusses the potential uses of DENSE in clinical practice. Methods: A search was conducted to identify relevant articles published from January 2000 through January 2023 using the Scopus, Web of Science, PubMed and Cochrane databases. The following search term was used: (DENSE OR 'displacement encoding with stimulated echoes' OR CURE) AND (dyssynchrony* OR asynchron* OR synchron*) AND (MRI OR 'magnetic resonance' OR CMR). Results: After removing duplicates, researchers screened a total of 174 papers. Papers that were not related to the topic, reviews, general overview articles and case reports were excluded, leaving 35 articles for further analysis. Of these, 14 studies focused on cardiac dyssynchrony estimation with DENSE, while the remaining 21 studies served as background material. The studies used various methods for presenting synchronicity, such as circumferential uniformity ratio estimate (CURE), CURE-singular value decomposition (SVD), radial uniformity ratio estimate (RURE), longitudinal uniformity ratio estimate (LURE), time to onset of shortening (TOS) and dyssynchrony index (DI). Most of the dyssynchrony studies concentrated on human heart failure, but congenital heart diseases and obesity were also evaluated. The researchers found that DENSE demonstrated high reproducibility and was found useful for detecting cardiac resynchronisation therapy (CRT) responders, optimising CRT device settings and assessing right ventricle synchronicity. In addition, studies showed a correlation between cardiac fibrosis and mechanical dyssynchrony in humans, as well as a decrease in the synchrony of contraction in the left ventricle in obese mice. Conclusions: DENSE shows promise as a tool for quantifying myocardial function and dyssynchrony, with advantages over other cardiac dyssynchrony evaluation methods. However, there remain challenges related to DENSE due to the relatively time-consuming imaging and analysis process. Improvements in imaging and analysing technology, as well as possible artificial intelligence solutions, may help overcome these challenges and lead to more widespread clinical use of DENSE.

2.
J Med Imaging (Bellingham) ; 11(2): 024003, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38510543

RESUMO

Purpose: The goal of this study was to develop a fully convolutional network (FCN) tool to automatedly segment the left-ventricular (LV) myocardium in displacement encoding with stimulated echoes MRI. The segmentation results are used for LV chamber quantification and strain analyses in breast cancer patients susceptible to cancer therapy-related cardiac dysfunction (CTRCD). Approach: A DeepLabV3+ FCN with a ResNet-101 backbone was custom-designed to conduct chamber quantification on 45 female breast cancer datasets (23 training, 11 validation, and 11 test sets). LV structural parameters and LV ejection fraction (LVEF) were measured, and myocardial strains estimated with the radial point interpolation method. Myocardial classification validation was against quantization-based ground-truth with computations of accuracy, Dice score, average perpendicular distance (APD), Hausdorff-distance, and others. Additional validations were conducted with equivalence tests and Cronbach's alpha (C-α) intraclass correlation coefficients between the FCN and a vendor tool on chamber quantification and myocardial strain computations. Results: Myocardial classification results against ground-truth were Dice=0.89, APD=2.4 mm, and accuracy=97% for the validation set and Dice=0.90, APD=2.5 mm, and accuracy=97% for the test set. The confidence intervals (CI) and two one-sided t-test results of equivalence tests between the FCN and vendor-tool were CI=-1.36% to 2.42%, p-value < 0.001 for LVEF (58±5% versus 57±6%), and CI=-0.71% to 0.63%, p-value < 0.001 for longitudinal strain (-15±2% versus -15±3%). Conclusions: The validation results were found equivalent to the vendor tool-based parameter estimates, which show that accurate LV chamber quantification followed by strain analysis for CTRCD investigation can be achieved with our proposed FCN methodology.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa