Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Magn Reson Med ; 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39323101

RESUMO

PURPOSE: Three-dimensional hyperpolarized 129Xe gas exchange imaging suffers from low SNR and long breath-holds, which could be improved using compressed sensing (CS). The purpose of this work was to assess whether gas exchange ratio maps are quantitatively preserved in CS-accelerated dissolved-phase 129Xe imaging and to investigate the feasibility of CS-dissolved 129Xe imaging with reduced-cost natural abundance (NA) xenon. METHODS: 129Xe gas exchange imaging was performed at 1.5 T with a multi-echo spectroscopic imaging sequence. A CS reconstruction with an acceleration factor of 2 was compared retrospectively with conventional gridding reconstruction in a cohort of 16 healthy volunteers, 5 chronic obstructive pulmonary disease patients, and 23 patients who were hospitalized following COVID-19 infection. Metrics of comparison included normalized mean absolute error, mean gas exchange ratio, and red blood cell (RBC) image SNR. Dissolved 129Xe CS imaging with NA xenon was assessed in 4 healthy volunteers. RESULTS: CS reconstruction enabled acquisition time to be halved, and it reduced background noise. Median RBC SNR increased from 6 (2-18) to 11 (2-100) with CS, and there was strong agreement between CS and gridding mean ratio map values (R2 = 0.99). Image fidelity was maintained for gridding RBC SNR > 5, but below this, normalized mean absolute error increased nonlinearly with decreasing SNR. CS increased the mean SNR of NA 129Xe images 3-fold. CONCLUSION: CS reconstruction of dissolved 129Xe imaging improved image quality with decreased scan time, while preserving key gas exchange metrics. This will benefit patients with breathlessness and/or low gas transfer and shows promise for NA-dissolved 129Xe imaging.

2.
J Appl Physiol (1985) ; 129(2): 218-229, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32552429

RESUMO

Magnetic resonance (MR) imaging and spectroscopy using dissolved hyperpolarized (HP) 129Xe have expanded the ability to probe lung function regionally and noninvasively. In particular, HP 129Xe imaging has been used to quantify impaired gas uptake by the pulmonary tissues. Whole-lung spectroscopy has also been used to assess global cardiogenic oscillations in the MR signal intensity originating from 129Xe dissolved in the red blood cells of pulmonary capillaries. Herein, we show that the magnitude of these cardiogenic dynamics can be mapped three dimensionally using radial MRI, because dissolved 129Xe dynamics are encoded directly in the raw imaging data. Specifically, 1-point Dixon imaging is combined with postacquisition keyhole image reconstruction to assess regional blood volume fluctuations within the pulmonary microvasculature throughout the cardiac cycle. This "oscillation mapping" was applied in healthy subjects (mean amplitude 9% of total RBC signal) and patients with pulmonary arterial hypertension (PAH; mean 4%) and idiopathic pulmonary fibrosis (IPF; mean 14%). Whole-lung mean values from these oscillation maps correlated strongly with spectroscopy and clinical pulmonary function testing, but exhibited significant regional heterogeneity, including gravitationally dependent gradients in healthy subjects. Moreover, regional oscillations were found to be sensitive to disease state. Greater percentages of the lungs exhibit low-amplitude oscillations in PAH patients, and longitudinal imaging shows high-amplitude oscillations increase significantly over time (4-14 mo, P = 0.02) in IPF patients. This technique enables regional dynamics within the pulmonary capillary bed to be measured, and in doing so, provides insight into the origin and progression of pathophysiology within the lung microvasculature.NEW & NOTEWORTHY Spatially heterogeneous abnormalities within the lung microvasculature contribute to pathology in various cardiopulmonary diseases but are difficult to assess noninvasively. Hyperpolarized 129Xe MRI is a noninvasive method to probe lung function, including regional gas exchange between pulmonary air spaces and capillaries. We show that cardiogenic oscillations in the raw dissolved 129Xe MRI signal from pulmonary capillary red blood cells can be imaged using a postacquisition reconstruction technique, providing a new means of assessing regional lung microvasculature function and disease state.


Assuntos
Fibrose Pulmonar Idiopática , Isótopos de Xenônio , Humanos , Pulmão/diagnóstico por imagem , Imageamento por Ressonância Magnética , Microvasos/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa