Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Brief Bioinform ; 23(1)2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-34893794

RESUMO

Multiple sequence alignment (MSA) is fundamental to many biological applications. But most classical MSA algorithms are difficult to handle large-scale multiple sequences, especially long sequences. Therefore, some recent aligners adopt an efficient divide-and-conquer strategy to divide long sequences into several short sub-sequences. Selecting the common segments (i.e. anchors) for division of sequences is very critical as it directly affects the accuracy and time cost. So, we proposed a novel algorithm, FMAlign, to improve the performance of multiple nucleotide sequence alignment. We use FM-index to extract long common segments at a low cost rather than using a space-consuming hash table. Moreover, after finding the longer optimal common segments, the sequences are divided by the longer common segments. FMAlign has been tested on virus and bacteria genome and human mitochondrial genome datasets, and compared with existing MSA methods such as MAFFT, HAlign and FAME. The experiments show that our method outperforms the existing methods in terms of running time, and has a high accuracy on long sequence sets. All the results demonstrate that our method is applicable to the large-scale nucleotide sequences in terms of sequence length and sequence number. The source code and related data are accessible in https://github.com/iliuh/FMAlign.


Assuntos
Sequência de Bases , Alinhamento de Sequência , Análise de Sequência de DNA/métodos , Algoritmos , Bases de Dados Factuais , Genoma Bacteriano , Genoma Humano , Humanos , Projetos de Pesquisa , Software
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa