Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Am J Physiol Regul Integr Comp Physiol ; 327(4): R442-R456, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39102462

RESUMO

The mammalian dive reflex, characterized by bradycardia and peripheral vasoconstriction, occurs in all mammals, including humans, in response to apnea. However, the dive reflex to a single, maximal, dry, dynamic apnea (DYN) and how it compares to a time-matched exercise control trial (EX) or dry static apnea (SA) has not been studied. We examined the hypotheses that, compared with EX and SA, the magnitude of the 1) cardiovascular response and 2) hematological response to DYN would be greater. Cardiovascular parameters [heart rate (HR), systolic (SBP), diastolic (DBP), and mean arterial (MAP) blood pressure] were continuously collected in 23 (F = 6 females) moderate and elite freedivers, first during a maximal DYN, then during a time-matched SA and EX on a swimming ergometer in randomized order. Venous blood draws were made before and following each trial. The change in calculated oxygen saturation (DYN: -17 ± 13%, EX: -2 ± 1%, ΔSA: -2 ± 1%; P < 0.05, all comparisons) was greater during DYN compared with EX and SA. During DYN, ΔSBP (DYN: 104 ± 31 mmHg; EX: 38 ± 23 mmHg; and SA: 20 ± 11 mmHg), ΔDBP (DYN: 45 ± 12 mmHg; EX: 14 ± 10 mmHg; and SA: 15 ± 8 mmHg), and ΔMAP (DYN: 65 ± 17 mmHg; EX: 22 ± 13 mmHg; and SA: 16 ± 9 mmHg) were increased compared with EX and SA, while ΔHR was greater during EX (DYN: -24 ± 23 beats/min; EX: 33 ± 13 beats/min; and SA: -1 ± 10 beats/min) than either DYN or SA (P < 0.0001, all comparisons). Females had a greater pressor response to EX (ΔSBP: 59 ± 30 mmHg; ΔDBP: 24 ± 14 mmHg; and ΔMAP: 35 ± 8 mmHg) than males (ΔSBP: 31 ± 15 mmHg; ΔDBP: 11 ± 6 mmHg; and ΔMAP: 18 ± 8 mmHg; P < 0.01, all comparisons). Together, these data indicate that DYN elicits a distinct, exaggerated cardiovascular response compared with EX or SA alone.NEW & NOTEWORTHY This study performed a dry dynamic apnea with sport-specific equipment to closely mimic the physiological demands of competition diving. We found the cardiovascular and hematological responses to dynamic apnea were more robust compared with time-matched exercise and dry static apnea control trials.


Assuntos
Apneia , Pressão Sanguínea , Suspensão da Respiração , Mergulho , Frequência Cardíaca , Humanos , Feminino , Masculino , Adulto , Mergulho/fisiologia , Apneia/fisiopatologia , Apneia/sangue , Pressão Sanguínea/fisiologia , Adulto Jovem , Reflexo de Mergulho , Saturação de Oxigênio , Sistema Cardiovascular/fisiopatologia , Sistema Cardiovascular/metabolismo , Fatores de Tempo
2.
Exp Physiol ; 109(3): 324-334, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37968859

RESUMO

The dive response, or the 'master switch of life', is probably the most studied physiological trait in marine mammals and is thought to conserve the available O2 for the heart and brain. Although generally thought to be an autonomic reflex, several studies indicate that the cardiovascular changes during diving are anticipatory and can be conditioned. The respiratory adaptations, where the aquatic breathing pattern resembles intermittent breathing in land mammals, with expiratory flow exceeding 160 litres s-1 has been measured in cetaceans, and where exposure to extreme pressures results in alveolar collapse (atelectasis) and recruitment upon ascent. Cardiorespiratory coupling, where breathing results in changes in heart rate, has been proposed to improve gas exchange. Cardiorespiratory coupling has also been reported in marine mammals, and in the bottlenose dolphin, where it alters both heart rate and stroke volume. When accounting for this respiratory dependence on cardiac function, several studies have reported an absence of a diving-related bradycardia except during dives that exceed the duration that is fuelled by aerobic metabolism. This review summarizes what is known about the respiratory physiology in marine mammals, with a special focus on cetaceans. The cardiorespiratory coupling is reviewed, and the selective gas exchange hypothesis is summarized, which provides a testable mechanism for how breath-hold diving vertebrates may actively prevent uptake of N2 during routine dives, and how stress results in failure of this mechanism, which results in diving-related gas emboli.


Assuntos
Mergulho , Animais , Mergulho/fisiologia , Mamíferos/fisiologia , Bradicardia/metabolismo , Frequência Cardíaca/fisiologia , Respiração
3.
J Exp Biol ; 227(5)2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38442390

RESUMO

Air-breathing vertebrates exhibit cardiovascular responses to diving including heart rate reduction (diving bradycardia). Field studies on aquatic mammals and birds have shown that the intensity of bradycardia can vary depending on diving behaviour, such as the depth of dives and dive duration. However, in aquatic reptiles, the variation in heart rate during deep dives under natural conditions has not been fully investigated. In this study, we released five loggerhead sea turtles (Caretta caretta) outfitted with recorders into the sea and recorded their electrocardiogram, depth, water temperature and longitudinal acceleration. After 3 days, the recorders automatically detached from the turtles. The heart rate signals were detected from the electrodes placed on the surface of the plastron. The mean (±s.d.) heart rate of 12.8±4.1 beats min-1 during dives was significantly lower than that of 20.9±4.1 beats min-1 during surface periods. Heart rate during dives varied with dive depth, although it remained lower than that at the surface. When the turtle dived deeper than 140 m, despite the relatively high flipper stroke rate (approximately 19 strokes min-1), the heart rate dropped rapidly to approximately 2 beats min-1 temporarily. The minimum instantaneous heart rate during dives was lower at deeper dive depths. Our results indicate that loggerhead sea turtles show variations in the intensity of diving bradycardia depending on their diving behaviour, similar to that shown by marine mammals and birds.


Assuntos
Caniformia , Tartarugas , Animais , Bradicardia , Frequência Cardíaca , Aceleração , Cetáceos
4.
J Exp Biol ; 226(20)2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37843467

RESUMO

Comparative physiology has developed a rich understanding of the physiological adaptations of organisms, from microbes to megafauna. Despite extreme differences in size and a diversity of habitats, general patterns are observed in their physiological adaptations. Yet, many organisms deviate from the general patterns, providing an opportunity to understand the importance of ecology in determining the evolution of unusual adaptations. Aquatic air-breathing vertebrates provide unique study systems in which the interplay between ecology, physiology and behavior is most evident. They must perform breath-hold dives to obtain food underwater, which imposes a physiological constraint on their foraging time as they must resurface to breathe. This separation of two critical resources has led researchers to investigate these organisms' physiological adaptations and trade-offs. Addressing such questions on large marine animals is best done in the field, given the difficulty of replicating the environment of these animals in the lab. This Review examines the long history of research on diving physiology and behavior. We show how innovative technology and the careful selection of research animals have provided a holistic understanding of diving mammals' physiology, behavior and ecology. We explore the role of the aerobic diving limit, body size, oxygen stores, prey distribution and metabolism. We then identify gaps in our knowledge and suggest areas for future research, pointing out how this research will help conserve these unique animals.


Assuntos
Mergulho , Animais , Mergulho/fisiologia , Mamíferos/fisiologia
5.
J Exp Biol ; 225(10)2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35502794

RESUMO

Physio-logging methods, which use animal-borne devices to record physiological variables, are entering a new era driven by advances in sensor development. However, existing datasets collected with traditional bio-loggers, such as accelerometers, still contain untapped eco-physiological information. Here, we present a computational method for extracting heart rate from high-resolution accelerometer data using a ballistocardiogram. We validated our method with simultaneous accelerometer-electrocardiogram tag deployments in a controlled setting on a killer whale (Orcinus orca) and demonstrate the predictions correspond with previously observed cardiovascular patterns in a blue whale (Balaenoptera musculus), including the magnitude of apneic bradycardia and increase in heart rate prior to and during ascent. Our ballistocardiogram method may be applied to mine heart rates from previously collected accelerometery data and expand our understanding of comparative cardiovascular physiology.


Assuntos
Balaenoptera , Caniformia , Orca , Acelerometria , Animais , Balaenoptera/fisiologia , Frequência Cardíaca
6.
J Exp Biol ; 225(9)2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35441228

RESUMO

Diving bradycardia is a reduction in the heart rate mediated by the parasympathetic system during diving. Although diving bradycardia is pronounced in aquatic mammals and birds, the existence of this response in aquatic reptiles, including sea turtles, remains under debate. Using the parasympathetic blocker atropine, we evaluated the involvement of the parasympathetic nervous system in heart rate reduction of loggerhead sea turtles (Caretta caretta) during voluntary diving in tanks. The heart rate of the control group dropped by 40-60% from the pre-dive value at the onset of diving; however, administration of atropine significantly inhibited heart rate reduction (P<0.001). Our results indicate that, similar to mammals and birds, the heart rate reduction in sea turtles while diving is primarily mediated by the parasympathetic nervous system. In conclusion, we suggest that diving bradycardia exists not only in aquatic mammals and birds but also in aquatic reptiles.


Assuntos
Tartarugas , Animais , Atropina/farmacologia , Bradicardia , Frequência Cardíaca/fisiologia , Mamíferos , Tartarugas/fisiologia
7.
Medicina (Kaunas) ; 58(1)2022 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-35056403

RESUMO

Background and Objectives: Vascular cell adhesion molecule-1 (VCAM-1) was identified as a cell adhesion molecule that helps to regulate inflammation-associated vascular adhesion and the transendothelial migration of leukocytes, such as macrophages and T cells. VCAM-1 is expressed by the vascular system and can be induced by reactive oxygen species, interleukin 1 beta (IL-1ß) or tumor necrosis factor alpha (TNFα), which are produced by many cell types. The newest data suggest that VCAM-1 is associated with the progression of numerous immunological disorders, such as rheumatoid arthritis, asthma, transplant rejection and cancer. The aim of this study was to analyze the increase in VCAM-1 expression and the impact of exposure in a hyperbaric chamber to VCAM-1 levels in human blood serum. Materials and Methods: The study included 92 volunteers. Blood for the tests was taken in the morning, from the basilic vein of fasting individuals, in accordance with the applicable procedure for blood collection for morphological tests. In both groups of volunteers, blood was collected before and after exposure, in heparinized tubes to obtain plasma and hemolysate, and in clot tubes to obtain serum. The level of VCAM-1 was determined using the immunoenzymatic ELISA method. Results: The study showed that the difference between the distribution of VCAM-1 before and after exposure corresponding to diving at a depth of 30 m was at the limit of statistical significance in the divers group and that, in most people, VCAM-1 was higher after exposure. Diving to a greater depth had a much more pronounced impact on changes in VCAM-1 values, as the changes observed in the VCAM-1 level as a result of diving to a depth of 60 m were statistically highly significant (p = 0.0002). The study showed an increase in VCAM-1 in relation to the baseline value, which reached as much as 80%, i.e., VCAM-1 after diving was almost twice as high in some people. There were statistically significant differences between the results obtained after exposure to diving conditions at a depth of 60 m and the values measured for the non-divers group. The leukocyte level increased statistically after exposure to 60 m. In contrast, hemoglobin levels decreased in most divers after exposure to diving at a depth of 30 m (p = 0.0098). Conclusions: Exposure in the hyperbaric chamber had an effect on serum VCAM-1 in the divers group and non-divers group. There is a correlation between the tested morphological parameters and the VCAM-1 level before and after exposure in the divers group and the non-divers group. Exposure may result in activation of the endothelium.


Assuntos
Mergulho/fisiologia , Oxigenoterapia Hiperbárica , Molécula 1 de Adesão de Célula Vascular/sangue , Adesão Celular , Moléculas de Adesão Celular , Estudos Transversais , Humanos
8.
J Exp Biol ; 224(Pt 2)2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33443045

RESUMO

Marine mammals rely on oxygen stored in blood, muscle and lungs to support breath-hold diving and foraging at sea. Here, we used biomedical imaging to examine lung oxygen stores and other key respiratory parameters in living ringed seals (Pusa hispida). Three-dimensional models created from computed tomography (CT) images were used to quantify total lung capacity (TLC), respiratory dead space, minimum air volume and total body volume to improve assessment of lung oxygen storage capacity, scaling relationships and buoyant force estimates. The results suggest that lung oxygen stores determined in vivo are smaller than those derived from postmortem measurements. We also demonstrate that, whereas established allometric relationships hold well for most pinnipeds, these relationships consistently overestimate TLC for the smallest phocid seal. Finally, measures of total body volume reveal differences in body density and net vertical forces in the water column that influence costs associated with diving and foraging in free-ranging seals.


Assuntos
Mergulho , Focas Verdadeiras , Animais , Medidas de Volume Pulmonar , Músculos , Oxigênio
9.
J Exp Biol ; 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34005800

RESUMO

Marine mammals rely on oxygen stored in blood, muscle, and lungs to support breath-hold diving and foraging at sea. Here, we used biomedical imaging to examine lung oxygen stores and other key respiratory parameters in living ringed seals (Pusa hispida). Three-dimensional models created from computed tomography (CT) images were used to quantify total lung capacity (TLC), respiratory dead space, minimum air volume, and total body volume to improve assessments of lung oxygen storage capacity, scaling relationships, and buoyant force estimates. Results suggest that lung oxygen stores determined in vivo are smaller than those derived from postmortem measurements. We also demonstrate that-while established allometric relationships hold well for most pinnipeds-these relationships consistently overestimate TLC for the smallest phocid seal. Finally, measures of total body volume reveal differences in body density and net vertical forces in the water column that influence costs associated with diving and foraging in free-ranging seals.

10.
J Exp Biol ; 223(Pt 12)2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32587107

RESUMO

The air volume in the respiratory system of marine tetrapods provides a store of O2 to fuel aerobic metabolism during dives; however, it can also be a liability, as the associated N2 can increase the risk of decompression sickness. In order to more fully understand the physiological limitations of different air-breathing marine vertebrates, it is therefore important to be able to accurately estimate the air volume in the respiratory system during diving. One method that has been used to do so is to calculate the air volume from glide phases - periods of movement during which no thrust is produced by the animal - which many species conduct during ascent periods, when gases are expanding owing to decreasing hydrostatic pressure. This method assumes that there is conservation of mass in the respiratory system, with volume changes only driven by pressure. In this Commentary, we use previously published data to argue that both the respiratory quotient and differences in tissue and blood gas solubility potentially alter the mass balance in the respiratory system throughout a dive. Therefore, near the end of a dive, the measured volume of gas at a given pressure may be 12-50% less than from the start of the dive; the actual difference will depend on the length of the dive, the cardiac output, the pulmonary shunt and the metabolic rate. Novel methods and improved understanding of diving physiology will be required to verify the size of the effects described here and to more accurately estimate the volume of gas inhaled at the start of a dive.


Assuntos
Mergulho , Animais , Pulmão , Medidas de Volume Pulmonar , Oxigênio , Respiração , Vertebrados
11.
J Exp Biol ; 223(Pt 5)2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32001545

RESUMO

Diving tetrapods (sea turtles, seabirds and marine mammals) are a biologically diverse group, yet all are under similar constraints: oxygen limitation and increased hydrostatic pressure at depth. Adipose tissue is important in the context of diving because nitrogen gas (N2) is five times more soluble in fat than in blood, creating a potential N2 sink in diving animals. Previous research demonstrates that unusual lipid composition [waxes and short-chained fatty acids (FA)] in adipose tissue of some whales leads to increased N2 solubility. We evaluated the N2 solubility of adipose tissue from 12 species of diving tetrapods lacking these unusual lipids to explore whether solubility in this tissue can be linked to lipid structure. Across all taxonomic groups, the same eight FA accounted for 70-80% of the entire lipid profile; almost all adipose tissues were dominated by monounsaturated FA (40.2-67.4 mol%). However, even with consistent FA profiles, there was considerable variability in N2 solubility, ranging from 0.051±0.003 to 0.073±0.004 ml N2 ml-1 oil. Interestingly, differences in N2 solubility could not be attributed to taxonomic group (P=0.06) or FA composition (P>0.10). These results lead to two main conclusions: (1) in triacylglycerol-only adipose tissues, the FA pool itself may not have a strong influence on N2 solubility; and (2) samples with similar FA profiles can have different N2 solubility values, suggesting that 3D arrangement of individual FA within a triacylglycerol molecule may have important roles in determining N2 solubility.


Assuntos
Tecido Adiposo/metabolismo , Aves/metabolismo , Ácidos Graxos/metabolismo , Mamíferos/metabolismo , Nitrogênio/metabolismo , Tartarugas/metabolismo , Tecido Adiposo/química , Animais , Mergulho , Ácidos Graxos/química , Estrutura Molecular , Nitrogênio/química , Solubilidade , Triglicerídeos/química
12.
J Exp Biol ; 223(Pt 4)2020 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-31974219

RESUMO

The upper respiratory tract of rorquals, lunge-feeding baleen whales, must be protected against water incursion and the risk of barotrauma at depth, where air-filled spaces like the bony nasal cavities may experience high adverse pressure gradients. We hypothesize these two disparate tasks are accomplished by paired cylindrical nasal plugs that attach on the rostrum and deep inside the nasal cavity. Here, we present evidence that the large size and deep attachment of the plugs is a compromise, allowing them to block the nasal cavities to prevent water entry while also facilitating pressure equilibration between the nasal cavities and ambient hydrostatic pressure (Pamb) at depth. We investigated nasal plug behaviour using videos of rorquals surfacing, plug morphology from dissections, histology and MRI scans, and plug function by mathematically modelling nasal pressures at depth. We found each nasal plug has three structurally distinct regions: a muscular rostral region, a predominantly fatty mid-section and an elastic tendon that attaches the plug caudally. We propose muscle contraction while surfacing pulls the fatty sections rostrally, opening the nasal cavities to air, while the elastic tendons snap the plugs back into place, sealing the cavities after breathing. At depth, we propose Pamb pushes the fatty region deeper into the nasal cavities, decreasing air volume by about half and equilibrating nasal cavity to Pamb, preventing barotrauma. The nasal plugs are a unique innovation in rorquals, which demonstrate their importance and novelty during diving, where pressure becomes as important an issue as the danger of water entry.


Assuntos
Mergulho/fisiologia , Cavidade Nasal/anatomia & histologia , Baleias/anatomia & histologia , Animais , Barotrauma , Cavidade Nasal/fisiologia , Baleias/fisiologia
13.
J Exp Biol ; 223(Pt 17)2020 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-32680902

RESUMO

In the current study we used transthoracic echocardiography to measure stroke volume (SV), heart rate (fH) and cardiac output (CO) in adult bottlenose dolphins (Tursiops truncatus), a male beluga whale calf [Delphinapterus leucas, body mass (Mb) range: 151-175 kg] and an adult female false killer whale (Pseudorca crassidens, estimated Mb: 500-550 kg) housed in managed care. We also recorded continuous electrocardiogram (ECG) in the beluga whale, bottlenose dolphin, false killer whale, killer whale (Orcinus orca) and pilot whale (Globicephala macrorhynchus) to evaluate cardiorespiratory coupling while breathing spontaneously under voluntary control. The results show that cetaceans have a strong respiratory sinus arrythmia (RSA), during which both fH and SV vary within the interbreath interval, making average values dependent on the breathing frequency (fR). The RSA-corrected fH was lower for all cetaceans compared with that of similarly sized terrestrial mammals breathing continuously. As compared with terrestrial mammals, the RSA-corrected SV and CO were either lower or the same for the dolphin and false killer whale, while both were elevated in the beluga whale. When plotting fR against fH for an inactive mammal, cetaceans had a greater cardiac response to changes in fR as compared with terrestrial mammals. We propose that these data indicate an important coupling between respiration and cardiac function that enhances gas exchange, and that this RSA is important to maximize gas exchange during surface intervals, similar to that reported in the elephant seal.


Assuntos
Golfinho Nariz-de-Garrafa , Cetáceos , Animais , Débito Cardíaco , Feminino , Masculino , Mamíferos , Volume Sistólico
14.
Dis Aquat Organ ; 138: 17-27, 2020 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-32052791

RESUMO

Pulmonary function testing was performed in 3 bottlenose dolphins Tursiops truncatus (1 female and 2 males) under managed care during a 2 yr period to assess whether these data provide diagnostic information about respiratory health. Pulmonary radiographs and standard clinical testing were used to evaluate the pulmonary health of each dolphin. The female dolphin (F1) had evidence of chronic pulmonary fibrosis, and 1 male (M2) developed pneumonia during the study. Pulmonary function data were collected from maximal respiratory efforts in water and from spontaneous breaths while beached. From these data, the flow-volume relationship, the flow measured between 25 and 75% of the expired vital capacity (mid forced expiratory flow, FEF25%-75%), and the percent of the vital capacity (VC) at the peak expiratory flow (%VCPEF), were evaluated and compared with the diagnostic assessment. For maximal respiratory manoeuvres in water, there were no differences in FEF25%-75% or %VCPEF, and the flow-volume relationship showed a consistent pattern for F1. Additionally, FEF25%-75% and %VCPEF decreased by 27 and 52%, respectively, and the flow-volume relationship showed clear flow limitations with emerging disease in M2. While spontaneously breathing on land, M2 also showed a 49% decrease in %VCPEF and changes in the flow-volume relationship, indicating flow limitations following the development of pneumonia. Based on these preliminary results, we suggest that pulmonary function testing should be given more attention as a non-invasive and possibly adjunctive diagnostic tool to evaluate lung health of dolphins under managed care and in the wild.


Assuntos
Golfinho Nariz-de-Garrafa , Animais , Feminino , Pulmão , Masculino
15.
J Exp Biol ; 222(Pt 5)2019 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-30760549

RESUMO

We measured respiratory flow (V̇), breathing frequency (fR), tidal volume (VT), breath duration and end-expired O2 content in bottlenose dolphins (Tursiops truncatus) before and after static surface breath-holds ranging from 34 to 292 s. There was considerable variation in the end-expired O2, VT and fR following a breath-hold. The analysis suggests that the dolphins attempt to minimize recovery following a dive by altering VT and fR to rapidly replenish the O2 stores. For the first breath following a surface breath-hold, the end-expired O2 decreased with dive duration, while VT and fR increased. Throughout the recovery period, end-expired O2 increased while the respiratory effort (VT, fR) decreased. We propose that the dolphins alter respiratory effort following a breath-hold according to the reduction in end-expired O2 levels, allowing almost complete recovery after 1.2 min.


Assuntos
Golfinho Nariz-de-Garrafa/fisiologia , Respiração , Animais , Suspensão da Respiração , Masculino , Testes de Função Respiratória/veterinária
16.
Proc Biol Sci ; 285(1877)2018 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-29695441

RESUMO

Hydrostatic lung compression in diving marine mammals, with collapsing alveoli blocking gas exchange at depth, has been the main theoretical basis for limiting N2 uptake and avoiding gas emboli (GE) as they ascend. However, studies of beached and bycaught cetaceans and sea turtles imply that air-breathing marine vertebrates may, under unusual circumstances, develop GE that result in decompression sickness (DCS) symptoms. Theoretical modelling of tissue and blood gas dynamics of breath-hold divers suggests that changes in perfusion and blood flow distribution may also play a significant role. The results from the modelling work suggest that our current understanding of diving physiology in many species is poor, as the models predict blood and tissue N2 levels that would result in severe DCS symptoms (chokes, paralysis and death) in a large fraction of natural dive profiles. In this review, we combine published results from marine mammals and turtles to propose alternative mechanisms for how marine vertebrates control gas exchange in the lung, through management of the pulmonary distribution of alveolar ventilation ([Formula: see text]) and cardiac output/lung perfusion ([Formula: see text]), varying the level of [Formula: see text] in different regions of the lung. Man-made disturbances, causing stress, could alter the [Formula: see text] mismatch level in the lung, resulting in an abnormally elevated uptake of N2, increasing the risk for GE. Our hypothesis provides avenues for new areas of research, offers an explanation for how sonar exposure may alter physiology causing GE and provides a new mechanism for how air-breathing marine vertebrates usually avoid the diving-related problems observed in human divers.


Assuntos
Doença da Descompressão/veterinária , Mergulho , Mamíferos/fisiologia , Tartarugas/fisiologia , Animais , Organismos Aquáticos/fisiologia , Descompressão , Doença da Descompressão/etiologia , Doença da Descompressão/fisiopatologia , Ventilação Pulmonar
17.
J Exp Biol ; 221(Pt 1)2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29122951

RESUMO

The dive response, a decrease in heart rate (fH) and peripheral vasoconstriction, is the key mechanism allowing breath-hold divers to perform long-duration dives. This pronounced cardiovascular response to diving has been investigated intensely in pinnipeds, but comparatively little is known for cetaceans, in particular in ecologically relevant settings. Here, we studied the dive fH response in one of the smallest cetaceans, the harbour porpoise (Phocoena phocoena). We used a novel multi-sensor data logger to record dive behaviour, fH, ventilations and feeding events in three trained porpoises, providing the first evaluation of cetacean fH regulation while performing a variety of natural behaviours, including prey capture. We predicted that tagged harbour porpoises would exhibit a decrease in fH in all dives, but the degree of bradycardia would be influenced by dive duration and activity, i.e. the dive fH response would be exercise modulated. In all dives, fH decreased compared with surface rates by at least 50% (mean maximum surface fH=173 beats min-1, mean minimum dive fH=50 beats min-1); however, dive fH was approximately 10 beats min-1 higher in active dives as a result of a slower decrease in fH and more variable fH during pursuit of prey. We show that porpoises exhibit the typical breath-hold diver bradycardia during aerobic dives and that the fH response is modulated by exercise and dive duration; however, other variables such as expectations and individual differences are equally important in determining diving fH.


Assuntos
Mergulho , Frequência Cardíaca/fisiologia , Motivação , Phocoena/fisiologia , Condicionamento Físico Animal , Animais , Feminino , Masculino , Phocoena/psicologia
18.
J Exp Biol ; 221(Pt 23)2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30348649

RESUMO

To provide new insight into the pathophysiological mechanisms underlying gas emboli (GE) in bycaught loggerhead sea turtles (Caretta caretta), we investigated the vasoactive characteristics of the pulmonary and systemic arteries, and the lung parenchyma (LP). Tissues were opportunistically excised from recently dead animals for in vitro studies of vasoactive responses to four different neurotransmitters: acetylcholine (ACh; parasympathetic), serotonin (5HT), adrenaline (Adr; sympathetic) and histamine. The significant amount of smooth muscle in the LP contracted in response to ACh, Adr and histamine. The intrapulmonary and systemic arteries contracted under both parasympathetic and sympathetic stimulation and when exposed to 5HT. However, proximal extrapulmonary arterial (PEPA) sections contracted in response to ACh and 5HT, whereas Adr caused relaxation. In sea turtles, the relaxation in the pulmonary artery was particularly pronounced at the level of the pulmonary artery sphincter (PASp), where the vessel wall was highly muscular. For comparison, we also studied tissue response in freshwater sliders turtles (Trachemys scripta elegans). Both PEPA and LP from freshwater sliders contracted in response to 5HT, ACh and also Adr. We propose that in sea turtles, the dive response (parasympathetic tone) constricts the PEPA, LP and PASp, causing a pulmonary shunt and limiting gas uptake at depth, which reduces the risk of GE during long and deep dives. Elevated sympathetic tone caused by forced submersion during entanglement with fishing gear increases the pulmonary blood flow causing an increase in N2 uptake, potentially leading to the formation of blood and tissue GE at the surface. These findings provide potential physiological and anatomical explanations on how these animals have evolved a cardiac shunt pattern that regulates gas exchange during deep and prolonged diving.


Assuntos
Mergulho/fisiologia , Artéria Pulmonar/efeitos dos fármacos , Tartarugas/fisiologia , Acetilcolina/farmacologia , Animais , Embolia Aérea/etiologia , Epinefrina/farmacologia , Histamina/farmacologia , Pulmão/irrigação sanguínea , Nitrogênio/metabolismo , Serotonina/farmacologia
19.
J Exp Biol ; 220(Pt 8): 1533-1540, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28167807

RESUMO

The depletion rate of the blood oxygen store, development of hypoxemia and dive capacity are dependent on the distribution and rate of blood oxygen delivery to tissues while diving. Although blood oxygen extraction by working muscle would increase the blood oxygen depletion rate in a swimming animal, there is little information on the relationship between muscle workload and blood oxygen depletion during dives. Therefore, we examined flipper stroke rate, a proxy of muscle workload, and posterior vena cava oxygen profiles in four adult female California sea lions (Zalophus californianus) during foraging trips at sea. Flipper stroke rate analysis revealed that sea lions minimized muscle metabolism with a stroke-glide strategy when diving, and exhibited prolonged glides during the descent of deeper dives (>100 m). During the descent phase of these deep dives, 55±21% of descent was spent gliding, with the longest glides lasting over 160 s and covering a vertical distance of 340 m. Animals also consistently glided to the surface from 15 to 25 m depth during these deeper dives. Venous hemoglobin saturation (SO2 ) profiles were highly variable throughout dives, with values occasionally increasing during shallow dives. The relationship between SO2 and flipper stroke rate was weak during deeper dives, while this relationship was stronger during shallow dives. We conclude that (1) the depletion of oxygen in the posterior vena cava in deep-diving sea lions is not dependent on stroke effort, and (2) stroke-glide patterns during dives contribute to a reduction of muscle metabolic rate.


Assuntos
Mergulho , Oxigênio/sangue , Leões-Marinhos/sangue , Leões-Marinhos/fisiologia , Animais , Gasometria , Feminino , Hemoglobinas/análise , Músculos/fisiologia , Natação
20.
Artigo em Inglês | MEDLINE | ID: mdl-27421239

RESUMO

To fully understand how diving seabirds and marine mammals balance the potentially conflicting demands of holding their breath while living their lives underwater (and maintaining physiological homeostasis during exercise, feeding, growth, and reproduction), physiological studies must be conducted with animals in their natural environments. The purpose of this article is to review the importance of making physiological measurements on diving animals in field settings, while acknowledging the challenges and highlighting some solutions. The most extreme divers are great candidates for study, especially in a comparative and mechanistic context. However, physiological data are also required of a wide range of species for problems relating to other disciplines, in particular ecology and conservation biology. Physiological data help with understanding and predicting the outcomes of environmental change, and the direct impacts of anthropogenic activities. Methodological approaches that have facilitated the development of field-based diving physiology include the isolated diving hole protocol and the translocation paradigm, and while there are many techniques for remote observation, animal-borne biotelemetry, or "biologging", has been critical. We discuss issues related to the attachment of instruments, the retrieval of data and sensing of physiological variables, while also considering negative impacts of tagging. This is illustrated with examples from a variety of species, and an in-depth look at one of the best studied and most extreme divers, the emperor penguin (Aptenodytes forsteri). With a variety of approaches and high demand for data on the physiology of diving seabirds and marine mammals, the future of field studies is bright.


Assuntos
Mergulho/fisiologia , Mamíferos/fisiologia , Spheniscidae/fisiologia , Animais , Organismos Aquáticos/fisiologia , Caniformia/fisiologia , Cetáceos/fisiologia , Telemetria/métodos , Telemetria/veterinária
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa