RESUMO
Bloom-forming gelatinous zooplankton occur circumglobally and significantly influence the structure of pelagic marine food webs and biogeochemical cycling through interactions with microbial communities. During bloom conditions especially, gelatinous zooplankton are keystone taxa that help determine the fate of primary production, nutrient remineralization, and carbon export. Using the pelagic tunicate Dolioletta gegenbauri as a model system for gelatinous zooplankton, we carried out a laboratory-based feeding experiment to investigate the potential ecosystem impacts of doliolid gut microbiomes and microbial communities associated with doliolid faecal pellets and the surrounding seawater. Metabarcoding targeting Bacteria and Archaea 16S rRNA genes/Archaea) and qPCR approaches were used to characterize microbiome assemblages. Comparison between sample types revealed distinct patterns in microbial diversity and biomass that were replicable across experiments. These observations support the hypothesis that through their presence and trophic activity, doliolids influence the structure of pelagic food webs and biogeochemical cycling in subtropical continental shelf systems where tunicate blooms are common. Bacteria associated with starved doliolids (representative of the resident gut microbiome) possessed distinct low-biomass and low-diversity microbial assemblages, suggesting that the doliolid microbiome is optimized to support a detrital trophic mode. Bacterial genera Pseudoalteromomas and Shimia were the most abundant potential core microbiome taxa, similar to patterns observed in other marine invertebrates. Exploratory bioinformatic analyses of predicted functional genes suggest that doliolids, via their interactions with bacterial communities, may affect important biogeochemical processes including nitrogen, sulphur, and organic matter cycling.
Assuntos
Microbiota , Urocordados , Animais , Cadeia Alimentar , Urocordados/genética , RNA Ribossômico 16S/genética , Microbiota/genética , Água do Mar/microbiologia , Bactérias/genética , Zooplâncton/genéticaRESUMO
Gelatinous zooplankton play a crucial role in marine planktonic food webs. However, primarily due to methodological challenges, the in situ diet of zooplankton remains poorly investigated and little is known about their trophic interactions including feeding behaviour, prey selection and in situ feeding rates. This is particularly true for gelatinous zooplankton including the marine pelagic tunicate, Dolioletta gegenbauri. In this study, we applied an 18S rRNA amplicon metabarcoding approach to identify the diet of captive-fed and wild-caught D. gegenbauri on the midcontinental shelf of the South Atlantic Bight, USA. Sequencing-based approaches were complimented with targeted quantitative real-time polymerase chain reaction (PCR) analyses. Captive-fed D. gegenbauri gut content was dominated by pico-, nano- and micro-plankton including pico-dinoflagellates (picozoa) and diatoms. These results suggested that diatoms were concentrated by D. gegenbauri relative to their concentration in the water column. Analysis of wild-caught doliolids by quantitative real-time PCR utilizing a group-specific diatom primer set confirmed that diatoms were concentrated by D. gegenbauri, particularly by the gonozooid life stage associated with actively developing blooms. Sequences derived from larger metazoans were frequently observed in wild-caught animals but not in captive-fed animals suggesting experimental bias associated with captive feeding. These studies revealed that the diet of D. gegenbauri is considerably more diverse than previously described, that parasites are common in wild populations, and that prey quality, quantity and parasites are likely all important factors in regulating doliolid population dynamics in continental shelf environments.