Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
J Appl Toxicol ; 44(10): 1489-1503, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38828527

RESUMO

Glyphosate (GLY) is a pesticide that severely alters nigrostriatal dopaminergic neurotransmission, inducing great increases in dopamine release from rat dorsal striatum. This GLY-induced striatal dopamine overflow occurs through mechanisms not yet fully understood, hence the interest in evaluating the role of other neurotransmitter systems in such effects. So, the main objective of this mechanistic study was to evaluate the possible mediation of the glutamatergic, cholinergic, and nitrergic systems in the GLY-induced in vivo dopamine release from rat dorsal striatum. The extracellular dopamine levels were measured by cerebral microdialysis and HPLC with electrochemical detection. Intrastriatal administration of GLY (5 mmol/L) significantly increased the dopamine release (1102%). Pretreatment with MK-801 (50 or 400 µmol/L), a non-competitive antagonist of NMDA receptors, significantly decreased the effect of GLY (by 70% and 74%, respectively), whereas AP-5 (400 µmol/L), a competitive antagonist of NMDA receptors, or CNQX (500 µmol/L), an AMPA/kainate receptor antagonist, had no significant effect. Administration of the nitric oxide synthase inhibitors, L-nitroarginine (L-NAME, 100 µmol/L) or 7-nitroindazole (7-NI, 100 µmol/L), also did not alter the effect of GLY on dopamine release. Finally, pretreatment of the animals with mecamylamine, an antagonist of nicotinic receptors, decreased the effect of GLY on dopamine release by 49%, whereas atropine, a muscarinic antagonist, had no significant effect. These results indicate that GLY-induced dopamine release largely depends on the activation of NMDA and nicotinic receptors in rat dorsal striatum. Future research is needed to determine the effects of this pesticide at environmentally relevant concentrations.


Assuntos
Corpo Estriado , Dopamina , Ácido Glutâmico , Glicina , Glifosato , Microdiálise , Ratos Wistar , Animais , Dopamina/metabolismo , Glicina/análogos & derivados , Glicina/toxicidade , Masculino , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Ratos , Ácido Glutâmico/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Indazóis/farmacologia , Herbicidas/toxicidade
2.
Hum Brain Mapp ; 44(15): 5125-5138, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37608591

RESUMO

While animal models indicate altered brain dopaminergic neurotransmission after premature birth, corresponding evidence in humans is scarce due to missing molecular imaging studies. To overcome this limitation, we studied dopaminergic neurotransmission changes in human prematurity indirectly by evaluating the spatial co-localization of regional alterations in blood oxygenation fluctuations with the distribution of adult dopaminergic neurotransmission. The study cohort comprised 99 very premature-born (<32 weeks of gestation and/or birth weight below 1500 g) and 107 full-term born young adults, being assessed by resting-state functional MRI (rs-fMRI) and IQ testing. Normative molecular imaging dopamine neurotransmission maps were derived from independent healthy control groups. We computed the co-localization of local (rs-fMRI) activity alterations in premature-born adults with respect to term-born individuals to different measures of dopaminergic neurotransmission. We performed selectivity analyses regarding other neuromodulatory systems and MRI measures. In addition, we tested if the strength of the co-localization is related to perinatal measures and IQ. We found selectively altered co-localization of rs-fMRI activity in the premature-born cohort with dopamine-2/3-receptor availability in premature-born adults. Alterations were specific for the dopaminergic system but not for the used MRI measure. The strength of the co-localization was negatively correlated with IQ. In line with animal studies, our findings support the notion of altered dopaminergic neurotransmission in prematurity which is associated with cognitive performance.


Assuntos
Cognição , Dopamina , Imageamento Dopaminérgico , Lactente Extremamente Prematuro , Nascimento Prematuro , Transmissão Sináptica , Dopamina/fisiologia , Nascimento Prematuro/diagnóstico por imagem , Nascimento Prematuro/psicologia , Humanos , Masculino , Feminino , Lactente , Adulto Jovem , Imageamento por Ressonância Magnética , Saturação de Oxigênio , Testes de Inteligência
3.
Neurochem Res ; 48(5): 1517-1530, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36525123

RESUMO

Values of binding potentials (BPND) of dopamine D2/3 receptors differ in different regions of the brain, but we do not know with certainty how much of this difference is due either to different receptor numbers, or to different affinities of tracers to the receptors, or to both. We tested the claim that both striatal and extrastriatal dopamine D2/3 receptor availabilities vary with age in vivo in humans by determining the values of BPND of the specific radioligand [11C]raclopride. We determined values of BPND in striatal and extrastriatal volumes-of-interest (VOI) with the same specific receptor radioligand. We estimated values of BPND in individual voxels of brains of healthy volunteers in vivo, and we obtained regional averages of VOI by dynamic positron emission tomography (PET). We calculated average values of BPND in caudate nucleus and putamen of striatum, and in frontal, occipital, parietal, and temporal cortices of the forebrain, by means of four methods, including the ERLiBiRD (Estimation of Reversible Ligand Binding and Receptor Density) method, the tissue reference methods of Logan and Logan-Ichise, respectively, and the SRTM (Simplified Reference Tissue Method). Voxelwise generation of parametric maps of values of BPND used the multi-linear regression version of SRTM. Age-dependent changes of the binding potential presented with an inverted U-shape with peak binding potentials reached between the ages of 20 and 30. The estimates of BPND declined significantly with age after the peak in both striatal and extrastriatal regions, as determined by all four methods, with the greatest decline observed in posterior (occipital and parietal) cortices (14% per decade) and the lowest decline in caudate nucleus (3% per decade). The sites of the greatest declines are of particular interest because of the clinical implications.


Assuntos
Dopamina , Receptores de Dopamina D2 , Humanos , Adulto , Adulto Jovem , Dopamina/metabolismo , Receptores de Dopamina D2/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Racloprida , Corpo Estriado/diagnóstico por imagem , Corpo Estriado/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Receptores de Dopamina D3/metabolismo
4.
Pestic Biochem Physiol ; 193: 105433, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37248010

RESUMO

The main objective of this study was to evaluate the effects and possible mechanisms of action of glyphosate and a glyphosate-based herbicide (GBH) on dopaminergic neurotransmission in the rat striatum. Acute exposure to glyphosate or GBH, administered by systemic (75 or 150 mg/kg, i.p.) or intrastriatal (1, 5, or 10 mM for 1 h) routes, produced significant concentration-dependent increases in dopamine release measured in vivo by cerebral microdialysis coupled to HPLC with electrochemical detection. Systemic administration of glyphosate also significantly impaired motor control and decreased striatal acetylcholinesterase activity and antioxidant capacity. At least two mechanisms can be proposed to explain the glyphosate-induced increases in extracellular dopamine levels: increased exocytotic dopamine release from synaptic vesicles or inhibition of dopamine transporter (DAT). Thus, we investigated the effects of intrastriatal administration of glyphosate (5 mM) in animals pretreated with tetrodotoxin (TTX) or reserpine. It was observed that TTX (10 or 20 µM) had no significant effect on glyphosate-induced dopamine release, while reserpine (10 mg/kg i.p) partially but significantly reduced the dopamine release. When glyphosate was coinfused with nomifensine (50 µM), the increase in dopamine levels was significantly higher than that observed with glyphosate or nomifensine alone. So, two possible hypotheses could explain this additive effect: both glyphosate and nomifensine act through different mechanisms at the dopaminergic terminals to increase dopamine levels; or both nomifensine and glyphosate act on DAT, with glyphosate simultaneously inhibiting reuptake and stimulating dopamine release by reversing the DAT function. Future research is needed to determine the effects of this pesticide at environmentally relevant doses.


Assuntos
Dopamina , Herbicidas , Nomifensina , Transmissão Sináptica , Animais , Ratos , Acetilcolinesterase , Nomifensina/farmacologia , Ratos Sprague-Dawley , Reserpina/farmacologia , Tetrodotoxina/farmacologia , Herbicidas/toxicidade , Glifosato
5.
Acta Neuropsychiatr ; 33(1): 1-8, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33183376

RESUMO

OBJECTIVE: Vitamin D deficiency may be a clinical problem in patients with addictions. The authors systematically searched for studies addressing vitamin D and addiction and develop a hypothesis which can direct future research of the possible mechanistic role of vitamin D in the process of addiction. METHODS: Systematic review of the literature found in PubMed and EMBASE followed by narrative review combined with clinical experiences leading to hypotheses for future research. RESULTS: Only five articles were identified about a role of vitamin D in the pathophysiology of addiction. Their results are in line with a possible influence of vitamin D in dopaminergic transmission. The cerebral vitamin D status depends on the functionality of genetic variants of vitamin D receptor and other involved genes. Routine serum calcidiol levels may not adequately reflect cerebral vitamin D status. Uncertainty exists regarding appropriate calcidiol blood levels and proper dosages for affecting the central nervous system (CNS). CONCLUSIONS: The putative pathophysiological role of vitamin D in substance abuse has been insufficiently studied which calls to more studies how to measure cerebral vitamin D status in clinical practice. Research is indicated whether vitamin D supplementation should use higher dosages and aim to reach higher calcidiol serum levels. Measuring dopaminergic functioning within the prefrontal cortex as reflected by neuropsychological tests selected as suitable could be a appropriate proxy for the cerebral vitamin D status when studying the pharmacogenomics of this functionality in patients.


Assuntos
Alcoolismo/fisiopatologia , Comportamento Aditivo/fisiopatologia , Sistema Nervoso Central/metabolismo , Deficiência de Vitamina D/complicações , Vitamina D/sangue , Adulto , Alcoolismo/genética , Alcoolismo/metabolismo , Animais , Comportamento Aditivo/genética , Comportamento Aditivo/metabolismo , Calcifediol/sangue , Sistema Nervoso Central/química , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Animais , Farmacogenética , Polimorfismo de Nucleotídeo Único/genética , Ratos , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo
6.
Addict Biol ; 25(2): e12728, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-30784175

RESUMO

Aversive memories related to drug withdrawal can generate a motivational state leading to compulsive drug taking. However, the mechanisms underlying the generation of these withdrawal memories remain unclear. Limbic structures, such as the basolateral amygdala (BLA) and the dentate gyrus (DG) of the hippocampus, play a crucial role in the negative affective component of morphine withdrawal. Given the prominent role of glucocorticoids (GCs), noradrenaline (NA), and dopamine (DA) in memory-related processes, in the present study, we employed the conditioned place aversion (CPA) paradigm to uncover the role of GCs on NA and DA neurotransmission within the BLA and NA neurotransmission within the DG during opiate-withdrawal conditioning (memory formation consolidation), and after reexposure to the conditioned environment (memory retrieval). We observed that adrenalectomy impaired naloxone-induced CPA. Memory retrieval was associated with an increase in dihydroxyphenylacetic acid (DOPAC) levels in the BLA in morphine-addicted animals in a GC-independent manner. Importantly, NA turnover was related with the expression of withdrawal physical signs during the conditioning phase and with locomotor activity during the test phase. On the other hand, reduced DA concentration in the BLA was correlated with the CPA score. Our results indicate that while noradrenergic system is more associated with the somatic consequences of withdrawal, dopaminergic neurotransmission modulates the affective state. Nevertheless, it seems necessary that both systems work together with GCs to enable aversive-memory formation and recall.


Assuntos
Complexo Nuclear Basolateral da Amígdala/metabolismo , Giro Denteado/metabolismo , Dopamina/metabolismo , Glucocorticoides/farmacologia , Morfina/metabolismo , Norepinefrina/metabolismo , Síndrome de Abstinência a Substâncias/metabolismo , Animais , Complexo Nuclear Basolateral da Amígdala/efeitos dos fármacos , Giro Denteado/efeitos dos fármacos , Modelos Animais de Doenças , Masculino , Ratos , Ratos Wistar , Transmissão Sináptica/efeitos dos fármacos
7.
J Neurochem ; 150(3): 330-340, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30748001

RESUMO

Cre/loxP recombination is a widely used approach to study gene function in vivo, using mice models expressing the Cre recombinase under the control of specific promoters or through viral delivery of Cre-expressing constructs. A profuse literature on transgenic mouse lines points out the deleterious effects of Cre expression in various cell types and tissues, presumably by acting on illegitimate loxP-like sites present in the genome. However, most studies reporting the consequences of Cre-lox gene invalidation often omit adequate controls to exclude the potential toxic effects of Cre, compromising the interpretation of data. In this study, we report the anatomical, neurochemical, and behavioral consequences in mice of adeno-associated virus (AAV)-mediated Cre expression in the dopaminergic nuclei substantia nigra, at commonly used viral titers (3 × 109 genome copies/0.3 µL or 2 × 109 genome copies/0.6 µL). We found that injecting AAV-eGFP-Cre into the SN engendered drastic and reproducible modifications of behavior, with increased basal locomotor activity as well as impaired locomotor response to cocaine compared to AAV-eGFP-injected controls. Cre expression in the SN induced a massive decrease in neuronal populations of both pars compacta and pars reticulata and dopamine depletion in the nigrostriatal pathway. This anatomical injury was associated with typical features of programmed cell death, including an increase in DNA break markers, evidence of apoptosis, and disrupted macroautophagy. These observations underscore the need for careful control of Cre toxicity in the brain and the reassessment of previous studies. In addition, our findings suggest that Cre-mediated ablation may constitute an efficient tool to explore the function of specific cell populations and areas in the brain, and the impact of neurodegeneration in these populations.


Assuntos
Integrases , Neurônios/patologia , Substância Negra/metabolismo , Substância Negra/patologia , Animais , Apoptose/efeitos dos fármacos , Dependovirus , Dopamina/metabolismo , Vetores Genéticos , Integrases/administração & dosagem , Integrases/genética , Integrases/toxicidade , Locomoção/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo
8.
Bull Exp Biol Med ; 160(2): 271-4, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26621272

RESUMO

The expression of dopamine receptor (DRD), Nurr1 transcription factor (NR4A2), and α-sinucleine (SNCA) genes in peripheral blood lymphocytes is evaluated. The results indicate that alcohol dependence is associated with high expression of SNCA and DRD4 (signifi cantly higher than in the control group) and is not associated with changes in the work of NR4A2 and DRD3 genes. The levels of DRD3 and DRD4 mRNA form a positive linear correlation (p≤0.05). The expression of SNCA and DRD4 genes can serve as an important peripheral marker of alcohol dependence development, which is essential for antipsychotic therapy.


Assuntos
Alcoolismo/genética , Alcoolismo/metabolismo , RNA Mensageiro/genética , Adulto , Feminino , Humanos , Linfócitos/metabolismo , Masculino , Pessoa de Meia-Idade , RNA Mensageiro/metabolismo , Receptores Dopaminérgicos/genética , Receptores Dopaminérgicos/metabolismo , Receptores de Dopamina D3/genética , Receptores de Dopamina D3/metabolismo , Transmissão Sináptica/genética , Transmissão Sináptica/fisiologia
9.
Front Nutr ; 10: 1267839, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37867499

RESUMO

Background: Although activation of inflammatory processes is essential to fight infections, its prolonged impact on brain function is well known to contribute to the pathophysiology of many medical conditions, including neuropsychiatric disorders. Therefore, identifying novel strategies to selectively counter the harmful effects of neuroinflammation appears as a major health concern. In that context, this study aimed to test the relevance of a nutritional intervention with saffron, a spice known for centuries for its beneficial effect on health. Methods: For this purpose, the impact of an acute oral administration of a standardized saffron extract, which was previously shown to display neuromodulatory properties and reduce depressive-like behavior, was measured in mice challenged with lipopolysaccharide (LPS, 830 µg/kg, ip). Results: Pretreatment with saffron extract (6.5 mg/kg, per os) did not reduce LPS-induced sickness behavior, preserving therefore this adaptive behavioral response essential for host defense. However, it interfered with delayed changes of expression of cytokines, chemokines and markers of microglial activation measured 24 h post-LPS treatment in key brain areas for behavior and mood control (frontal cortex, hippocampus, striatum). Importantly, this pretreatment also counteracted by that time the impact of LPS on several neurobiological processes contributing to inflammation-induced emotional alterations, in particular the activation of the kynurenine pathway, assessed through the expression of its main enzymes, as well as concomitant impairment of serotonergic and dopaminergic neurotransmission. Conclusion: Altogether, this study provides important clues on how saffron extract interferes with brain function in conditions of immune stimulation and supports the relevance of saffron-based nutritional interventions to improve the management of inflammation-related comorbidities.

10.
Exp Ther Med ; 23(2): 185, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35069866

RESUMO

The aim of this overview was to outline the pathophysiology, common comorbidities and current therapeutic modalities in the treatment/management of restless legs syndrome (RLS) a sensorimotor neurological disorder. The main symptom in RLS is a compelling compulsion to move the legs and a sense of restlessness at rest most commonly occurring during the night and improving with movement. The prevalence of secondary RLS among comorbid conditions such as idiopathic pulmonary fibrosis, end-stage renal disease, irritable bowel syndrome and attention deficit/hyperactivity disorder have further elucidated our understanding of the role of the iron-dopamine hypothesis as an etiopathogenetic hallmark in RLS and the efficacy of therapeutic approaches in milder to more severe forms. Currently, RLS treatment uses only symptomatic agents, since a disease-modifying therapy does not yet exist. The phenomena of rebound and augmentation have become central phenomena in overcoming the pharmacotherapeutic challenges when treating with dopaminergic agents in RLS. Considering alternative nonpharmacological therapies, especially for the treatment of RLS in pregnancy has a significant role and positive clinical outcome for patients in controlling symptoms.

11.
Artigo em Inglês | MEDLINE | ID: mdl-34207128

RESUMO

Environmental exposure to arsenic (As), lead (Pb), and cadmium (Cd) frequently occurs; however, data on the specific effects of combined exposure on neurotransmission, specifically dopaminergic neurotransmission, are lacking. In this study, motor coordination and dopamine content, along with the expression of tyrosine hydroxylase (TH), dopamine transporter (DAT), vesicular monoamine transporter 2 (VMAT2), and dopamine receptors (DRs), were examined in the striatum of adult male mice following exposure to drinking water containing As, Pb, and/or Cd. We found that exposure to a metal mixture impaired motor coordination. After 4 weeks of treatment, a significant decrease in dopamine content and expression of TH, DAT, and VMAT2 was observed in the striatum of metal-mixture-treated mice, compared to the controls or single-metal-exposed groups. However, DRD1 and DRD2 expression did not significantly change with metal treatment. These results suggest that altered dopaminergic neurotransmission by the collective action of metals may contribute to metal-mixture-induced neurobehavioral disorders.


Assuntos
Dopamina , Água Potável , Animais , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Masculino , Camundongos , Transmissão Sináptica , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo , Proteínas Vesiculares de Transporte de Monoamina/genética , Proteínas Vesiculares de Transporte de Monoamina/metabolismo
12.
Front Synaptic Neurosci ; 13: 638519, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33967734

RESUMO

Parkinson's disease (PD) is an extrapyramidal disorder characterized by neuronal degeneration in several regions of the peripheral and central nervous systems. It is the second most frequent neurodegenerative disease after Alzheimer's. It has become a major health problem, affecting 1% of the world population over 60 years old and 3% of people beyond 80 years. The main histological findings are intracellular Lewy bodies composed of misfolded α-synuclein protein aggregates and loss of dopaminergic neurons in the central nervous system. Neuroinflammation, apoptosis, mitochondrial dysfunction, altered calcium homeostasis, abnormal protein degradation, and synaptic pathobiology have been put forward as mechanisms leading to cell death, α-synuclein deposition, or both. A progressive loss of dopaminergic neurons in the substantia nigra late in the neurodegeneration leads to developing motor symptoms like bradykinesia, tremor, and rigidity. The renin-angiotensin system (RAS), which is involved in regulating blood pressure and body fluid balance, also plays other important functions in the brain. The RAS is involved in the autocrine and paracrine regulation of the nigrostriatal dopaminergic synapses. Dopamine depletion, as in PD, increases angiotensin II expression, which stimulates or inhibits dopamine synthesis and is released via AT1 or AT2 receptors. Furthermore, angiotensin II AT1 receptors inhibit D1 receptor activation allosterically. Therefore, the RAS may have an important modulating role in the flow of information from the brain cortex to the basal ganglia. High angiotensin II levels might even aggravate neurodegeneration, activating the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex, which leads to increased reactive oxygen species production.

13.
Transl Neurodegener ; 9(1): 34, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32867847

RESUMO

In recent years, many studies have investigated the correlations between Parkinson's disease (PD) and vitamin D status, but the conclusion remains elusive. The present review focuses on the associations between PD and serum vitamin D levels by reviewing studies on the associations of PD with serum vitamin D levels and vitamin D receptor (VDR) gene polymorphisms from PubMed, Web of Science, Cochrane Library, and Embase databases. We found that PD patients have lower vitamin D levels than healthy controls and that the vitamin D concentrations are negatively correlated with PD risk and severity. Furthermore, higher vitamin D concentrations are linked to better cognitive function and mood in PD patients. Findings on the relationship between VDR gene polymorphisms and the risk of PD are inconsistent, but the FokI (C/T) polymorphism is significantly linked with PD. The occurrence of FokI (C/T) gene polymorphism may influence the risk, severity, and cognitive ability of PD patients, while also possibly influencing the effect of Vitamin D3 supplementation in PD patients. In view of the neuroprotective effects of vitamin D and the close association between vitamin D and dopaminergic neurotransmission, interventional prospective studies on vitamin D supplementation in PD patients should be conducted in the future.


Assuntos
Suplementos Nutricionais , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética , Polimorfismo de Nucleotídeo Único/genética , Receptores de Calcitriol/genética , Vitamina D/administração & dosagem , Estudos de Casos e Controles , Predisposição Genética para Doença/genética , Humanos , Doença de Parkinson/sangue , Estudos Prospectivos , Receptores de Calcitriol/sangue , Vitamina D/sangue , Deficiência de Vitamina D/sangue , Deficiência de Vitamina D/tratamento farmacológico , Deficiência de Vitamina D/genética
14.
Elife ; 92020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32955434

RESUMO

Most therapeutic candidates for treating attention-deficit hyperactivity disorder (ADHD) have focused on modulating the dopaminergic neurotransmission system with neurotrophic factors. Regulation of this system by transcranial direct current stimulation (tDCS) could contribute to the recovery of cognitive symptoms observed in patients with ADHD. Here, male spontaneously hypertensive rats (SHR) were subjected to consecutive high-definition tDCS (HD-tDCS) (20 min, 50 µA, current density 63.7 A/m2, charge density 76.4 kC/m2) over the prefrontal cortex. This treatment alleviated cognitive deficits, with an increase in tyrosine hydroxylase and vesicular monoamine transporter two and significantly decreased plasma membrane reuptake transporter (DAT). HD-tDCS application increased the expression of several neurotrophic factors, particularly brain-derived neurotrophic factor (BDNF), and activated hippocampal neurogenesis. Our results suggest that anodal HD-tDCS over the prefrontal cortex may ameliorate cognitive dysfunction via regulation of DAT and BDNF in the mesocorticolimbic dopaminergic pathways, and therefore represents a potential adjuvant therapy for ADHD.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/metabolismo , Córtex Pré-Frontal , Estimulação Transcraniana por Corrente Contínua , Animais , Modelos Animais de Doenças , Masculino , Fatores de Crescimento Neural/metabolismo , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/metabolismo , Córtex Pré-Frontal/química , Córtex Pré-Frontal/metabolismo , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY
15.
Toxicol Lett ; 299: 124-128, 2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30292885

RESUMO

Paraoxon (POX) is an extremely neurotoxic organophosphorous compound (OP) which main toxic mechanism is the irreversible inhibition of cholinesterase. Although the cholinergic system has always been linked as responsible for its acute effects, experimental studies have suggested that the dopaminergic system also may be a potential target for OPs. Based on this, in this study, the acute intrastriatal effects of POX on dopaminergic neurotransmission were characterized in vivo using brain microdialysis in freely moving rats. In situ administration of POX (5, 25 and 50 nmol, 60 min) significantly increased the striatal dopamine overflow (to 435 ± 79%, 1066 ± 120%, and 1861 ± 332%, respectively), whereas a lower concentration (0.5 nmol) did not affect dopamine levels. Administration of POX (25 nmol) to atropine (15 nmol) pretreated animals, produced an increase in dopamine overflow that was ∼63% smaller than those observed in animals not pretreated. Administration of POX (25 nmol) to mecamylamine (35 nmol) pretreated animals did not significantly affect the POX-induced dopamine release. Our results suggest that acute administration of POX increases the dopamine release in a concentration-dependent way, being this release dependent on acetylcholinesterase inhibition and mediated predominantly by the activation of striatal muscarinic receptors, once the muscarinic antagonist atropine partially blocks the POX-induced dopamine release.


Assuntos
Corpo Estriado/efeitos dos fármacos , Dopamina/metabolismo , Paraoxon/toxicidade , Transmissão Sináptica/efeitos dos fármacos , Acetilcolinesterase/metabolismo , Animais , Corpo Estriado/metabolismo , Relação Dose-Resposta a Droga , Feminino , Infusões Intraventriculares , Microdiálise , Ratos Sprague-Dawley , Receptores Nicotínicos/metabolismo
16.
IBRO Rep ; 4: 7-13, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30135946

RESUMO

Ketamine (KET), a NMDA receptor antagonist, has been studied for its rapid and efficacious antidepressant effect, even for the treatment-resistant depression. Although depression is a major cause of disability worldwide, the treatment can be feasible, affordable and cost-effective, decreasing the population health burden. We evaluated the antidepressive-like effects of KET and its actions on monoamine contents (DA and its metabolites, as well as 5-HT) and on tyrosine hydroxylase (TH). In addition DAT and SERT (DA and 5-HT transporters, respectively) were also assessed. Male Swiss mice were divided into Control and KET-treated groups. The animals were acutely treated with KET (2, 5 or 10 mg/kg, i.p.) and subjected to the forced swimming test, for evaluation of the antidepressive-like behavior. Imipramine and fluoxetine were used as references. The results showed that KET decreased dose-dependently the immobility time and shortly after the test, the animals were euthanized for striatal dissections and monoamine determinations. In addition, the brain (striata, hippocampi and prefrontal cortices) was immunohistochemically processed for TH, DAT and SERT. KET at its higher dose increased DA and its metabolites (DOPAC and HVA) and mainly 5-HT contents, in mice striata, effects associated with increases in TH and decreases in DAT immunoreactivities. Furthermore, reductions in SERT immunoreactivities were observed in the striatum and hippocampus. The results indicate that KET antidepressive-like effect probably involves, among other factors, monoaminergic pathways, as suggested by the increased striatal TH immunoreactivity and reduced brain DA (DAT) and 5-HT (SERT) transporters.

17.
Behav Brain Res ; 352: 125-132, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28988969

RESUMO

Fetal Alcohol Spectrum Disorders (FASD) represent a large unmet medical need. Exposure of the developing human embryo to alcohol can lead to life-long suffering. Despite the well documented deleterious effects of alcohol on the developing fetus, pregnant women continue to drink alcohol, and FASD remains the leading cause of preventable mental retardation and other behavioral abnormalities. Particularly prevalent are the milder forms of the disease cluster, representing children who do not show obvious physical signs and who may be undiagnosed or misdiagnosed. To develop treatment and diagnostic tools, researchers have turned to animal models. The zebrafish is becoming one of the leading biomedical research organisms that may facilitate discovery of the biological mechanisms underlying this disease and the identification of biomarkers that may be used for diagnosis. Here we review the latest advances of this field, mostly focussing on the discoveries made in our own laboratory and others with zebrafish employed to analyze the effects of moderate to low level of exposure to alcohol. We argue that the zebrafish represents unique advantages, and adding information obtained with this species to the mix of other animal models will significantly increase translational relevance of animal biomedical research for the analysis of human FASD.


Assuntos
Modelos Animais de Doenças , Transtornos do Espectro Alcoólico Fetal , Peixe-Zebra , Animais , Humanos
18.
Adv Pharm Bull ; 7(3): 359-365, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29071217

RESUMO

Purpose: Modafinil is a vigilance-enhancing drug licensed for narcolepsy. The use of modafinil leads to various neuromodulatory effects with very low abuse potential. A body of evidence suggested that modafinil may have anti-parkinsonian effects. This study was designed to evaluate whether modafinil could improve motor dysfunction in the 6-hydroxydopamine (6-OHDA)-induced rat model of Parkinson's disease. Methods: Male Wistar rats (180-220 g, n= 98) were used in this study. Parkinsonism was induced by injection of 6-hydroxydopamine (10 µg/2µl in 0.2 % ascorbic acid-saline) into the right striatum. Parkinsonian rats received intraperitoneal (ip) injections of modafinil (50, 75, and 100 mg/kg) and catalepsy-like immobility was assessed by the bar test (BT). Furthermore, involvement of dopamine D1 and D2 receptors in modafinil's anti-parkinsonian effects was studied. For this purpose, parkinsonian animals were pretreated with SCH23390 and raclopride (the dopamine D1 and D2 receptor anatgonists, respectively) or SCH23390 + raclopride, and then assessed by the BT. Results: Modafinil (100 mg/kg) showed anti-cataleptic effects in the BT. Notably, the effect of modafinil in the BT was reversed in parkinsonian rats pretreated with raclopride (1.25 mg/kg) and/or SCH23390 + raclopride (0.75 and 1.25 mg/kg, respectively), but not in those pretreated with SCH23390 (0.75 mg/kg). Conclusion: Acute administration of modafinil improves 6-OHDA-induced motor impairment possibly through activation of dopamine D2 receptors.

19.
EC Pharmacol Toxicol ; 3(2): 31-42, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-31633124

RESUMO

Pb, As and Mn are neurotoxic metals, present as mixtures at various settings. All metals are known to interfere with cholinergic/dopaminergic neurotransmission and motor function. The main objective of this work was to assess metal mixture effects of lead (Pb), arsenic (As) and manganese (Mn) on motor activity, and to evaluate the role of each mixture component as well as their additive/synergic interactions on dopaminergic and cholinergic neurotransmission. Wistar rats were treated with 8 doses of each single metal, Pb, As and Mn, or a triple metal mixture. Motor activity was evaluated along with cholinergic/dopaminergic neurotransmission, using brain acetylcholinesterase (AChE-Br) activity and serum prolactin (PRL-S) levels, respectively. Brain concentrations of Pb, As, Mn were also quantified. The metal mixture induced decreased motor activity relative to all other groups with factor analysis revealing close proximity between AChE-Br and motor activity. Pb brain levels increased significantly as compared to all the other groups, while ß coefficients of multiple regression showed that this metal was the most effective in changing AChE-Br. Significant effects of interactions among the three metals on the activity of this enzyme were also noted for the metal mixture. In conclusion, co-exposure to Pb, As and Mn mixture alters the cholinergic system and motor activity to a greater extent than the dopaminergic system. Additive/synergic interactions between Pb, As and Mn may have a relevant role in mediating these events.

20.
Neurochem Int ; 99: 147-157, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27374845

RESUMO

Isatin is an endogenous indole that inhibits monoamine oxidase (MAO), being more selective for MAO-B than MAO-A isoform. By inhibiting MAO, isatin increases dopamine levels in the brain and, in animal models of Parkinson's disease (PD) isatin is able to prevent dopamine depletion. Contradictorily, some studies indicate that isatin did not increase striatal dopamine levels, although it was able to improve the motor signs in PD model. Given these conflicting data, our aim was to study the effects and neurochemical mechanisms of action of isatin on in vivo dopamine release from rat dorsal striatum using brain microdialysis technique in conscious and freely moving animals. Our results showed that intrastriatal administration of 1, 5 or 10 mM isatin, for 1 h, significantly increased dopamine levels to 355 ± 104%, 700 ± 72%, and 1241 ± 146%, when compared with basal values, respectively. The highest concentration of isatin (10 mM) was used to investigate whether the dopamine overflow is due to an exocytotic release or due to a possible action on dopamine transporter (DAT). The removal of Ca(++) from medium, administration of TTX (10 µM), or pretreatment with reserpine (10 mg/kg) significantly decreased by 90%, 83%, and 78%, respectively, the effect of isatin on dopamine levels. The blockade of DAT with nomifensine (50 µM) did not alter the effect of isatin; and isatin significantly increased the depolarization-evoked release of dopamine. These results suggest that isatin-induced dopamine release depends on vesicular dopamine content, and takes place due to a previous entry of Ca(++) and terminal depolarization.


Assuntos
Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Dopamina/metabolismo , Isatina/farmacologia , Inibidores da Monoaminoxidase/farmacologia , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Animais , Feminino , Microdiálise/métodos , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa