Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 16(8)2016 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-27527176

RESUMO

A simple, novel concept for the one-step fabrication of a low-cost, easy-to-use droplet-based electrochemical (EC) sensor is described, in which the EC reagents are contained in a droplet and the droplet assay is operated on a simple planar surface instead of in a complicated closed channel/chamber. In combination with an elegant carbon electrode configuration, screen-printed on a widely available polyethylene terephthalate (PET) substrate, the developed sensor exhibits a stable solution-restriction capacity and acceptable EC response, and thus can be used directly for the detection of different analytes (including ascorbic acid (AA), copper ions (Cu(2+)), 2'-deoxyguanosine 5'-triphosphate (dGTP) and ferulic acid (FA)), without any pretreatment. The obtained, acceptable linear ranges/detection limits for AA, Cu(2+), dGTP and FA are 0.5-10/0.415 mM, (0.0157-0.1574 and 0.1574-1.5736)/0.011 mM, 0.01-0.1/0.008 mM and 0.0257-0.515/0.024 mM, respectively. Finally, the utility of the droplet-based EC sensor was demonstrated for the determination of AA in two commercial beverages, and of Cu(2+) in two water samples, with reliable recovery and good stability. The applicability of the droplet-based sensor demonstrates that the proposed EC strategy is potentially a cost-effective solution for a series of biochemical sensing applications in public health, environmental monitoring, and the developing world.


Assuntos
Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Monitoramento Ambiental/métodos , Polietilenotereftalatos/química , Ácido Ascórbico/isolamento & purificação , Cobre/isolamento & purificação , Ácidos Cumáricos/isolamento & purificação , Nucleotídeos de Desoxiguanina/isolamento & purificação , Humanos
2.
Micromachines (Basel) ; 13(3)2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35334782

RESUMO

In this study, we developed a liquid crystal (LC) droplet-based sensing platform for the detection of carboxylesterase (CES) and its inhibitors. The LC droplet patterns in contact with myristoylcholine chloride (Myr) exhibited dark cross appearances, corresponding to homeotropic anchoring of the LCs at the aqueous/LC interface. However, in the presence of CES, Myr was hydrolyzed; therefore, the optical images of the LC patterns changed to bright fan-shaped textures, corresponding to a planar orientation of LCs at the interface. In contrast, the presence of CES inhibitors, such as benzil, inhibits the hydrolysis of Myr; as a result, the LC patterns exhibit dark cross textures. This principle led to the development of an LC droplet-based sensing method with a detection limit of 2.8 U/L and 10 µM, for CES detection and its inhibitor, respectively. The developed biosensor not only enables simple and label-free detection of CES but also shows high promise for the detection of CES inhibitors.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa