Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 250
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
J Sleep Res ; : e14259, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38837467

RESUMO

All new vehicle types within the European Union must now be equipped with a driver drowsiness and attention warning system starting from 2022. The specific requirements for the test procedure necessary for type approval are defined in the Annex of EU Regulation C/2021/2639. The objectives of this study were to: (i) investigate how sleepiness develops in professional truck drivers under real-road driving conditions; and (ii) assess the feasibility of a test procedure for validating driver drowsiness and attention warning systems according to the EU regulation. Twenty-four professional truck drivers participated in the test. They drove for 180 km on a dual-lane motorway, first during daytime after a normal night's sleep and then at nighttime after being awake since early morning. The results showed higher sleepiness levels during nighttime driving compared with daytime, with a faster increase in sleepiness with distance driven, especially during the night. Psychomotor vigilance task results corroborated these findings. From a driver drowsiness and attention warning testing perspective, the study design with sleep-deprived drivers at night was successful in inducing the targeted sleepiness level of a Karolinska Sleepiness Scale score of ≥ 8. Many drivers who reported a Karolinska Sleepiness Scale ≥ 8 during the drives also acknowledged feeling sleepy in the post-drive questionnaire. Reaching high levels of sleepiness on real roads during daytime is more problematic, not the least from legal and ethical perspectives as higher traffic densities during the daytime lead to increased risks.

2.
Brain Topogr ; 37(1): 1-18, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37995000

RESUMO

Nowadays, road accidents pose a severe risk in cases of sleep disorders. We proposed a novel hybrid deep-learning model for detecting drowsiness to address this issue. The proposed model combines the strengths of discrete wavelet long short-term memory (DWLSTM) and convolutional neural networks (CNN) models to classify single-channel electroencephalogram (EEG) signals. Baseline models such as support vector machine (SVM), linear discriminant analysis (LDA), back propagation neural networks (BPNN), CNN, and CNN merged with LSTM (CNN+LSTM) did not fully utilize the time sequence information. Our proposed model incorporates a majority voting between LSTM layers integrated with discrete wavelet transform (DWT) and the CNN model fed with spectrograms as images. The features extracted from sub-bands generated by DWT can provide more informative & discriminating than using the raw EEG signal. Similarly, spectrogram images fed to CNN learn the specific patterns and features with different levels of drowsiness. Furthermore, the proposed model outperformed state-of-the-art deep learning techniques and conventional baseline methods, achieving an average accuracy of 74.62%, 77.76% (using rounding, F1-score maximization approach respectively for generating labels) on 11 subjects for leave-one-out subject method. It achieved high accuracy while maintaining relatively shorter training and testing times, making it more desirable for quicker drowsiness detection. The performance metrics (accuracy, precision, recall, F1-score) are evaluated after 100 randomized tests along with a 95% confidence interval for classification. Additionally, we validated the mean accuracies from five types of wavelet families, including daubechis, symlet, bi-orthogonal, coiflets, and haar, merged with LSTM layers.


Assuntos
Aprendizado Profundo , Humanos , Reconhecimento Psicológico , Rememoração Mental , Eletroencefalografia , Benchmarking
3.
Sensors (Basel) ; 24(13)2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39001037

RESUMO

Drowsiness is a main factor for various costly defects, even fatal accidents in areas such as construction, transportation, industry and medicine, due to the lack of monitoring vigilance in the mentioned areas. The implementation of a drowsiness detection system can greatly help to reduce the defects and accident rates by alerting individuals when they enter a drowsy state. This research proposes an electroencephalography (EEG)-based approach for detecting drowsiness. EEG signals are passed through a preprocessing chain composed of artifact removal and segmentation to ensure accurate detection followed by different feature extraction methods to extract the different features related to drowsiness. This work explores the use of various machine learning algorithms such as Support Vector Machine (SVM), the K nearest neighbor (KNN), the Naive Bayes (NB), the Decision Tree (DT), and the Multilayer Perceptron (MLP) to analyze EEG signals sourced from the DROZY database, carefully labeled into two distinct states of alertness (awake and drowsy). Segmentation into 10 s intervals ensures precise detection, while a relevant feature selection layer enhances accuracy and generalizability. The proposed approach achieves high accuracy rates of 99.84% and 96.4% for intra (subject by subject) and inter (cross-subject) modes, respectively. SVM emerges as the most effective model for drowsiness detection in the intra mode, while MLP demonstrates superior accuracy in the inter mode. This research offers a promising avenue for implementing proactive drowsiness detection systems to enhance occupational safety across various industries.


Assuntos
Eletroencefalografia , Fases do Sono , Máquina de Vetores de Suporte , Humanos , Eletroencefalografia/métodos , Fases do Sono/fisiologia , Algoritmos , Eletrodos , Processamento de Sinais Assistido por Computador , Teorema de Bayes , Aprendizado de Máquina
4.
Sensors (Basel) ; 24(12)2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38931541

RESUMO

Driving while drowsy poses significant risks, including reduced cognitive function and the potential for accidents, which can lead to severe consequences such as trauma, economic losses, injuries, or death. The use of artificial intelligence can enable effective detection of driver drowsiness, helping to prevent accidents and enhance driver performance. This research aims to address the crucial need for real-time and accurate drowsiness detection to mitigate the impact of fatigue-related accidents. Leveraging ultra-wideband radar data collected over five minutes, the dataset was segmented into one-minute chunks and transformed into grayscale images. Spatial features are retrieved from the images using a two-dimensional Convolutional Neural Network. Following that, these features were used to train and test multiple machine learning classifiers. The ensemble classifier RF-XGB-SVM, which combines Random Forest, XGBoost, and Support Vector Machine using a hard voting criterion, performed admirably with an accuracy of 96.6%. Additionally, the proposed approach was validated with a robust k-fold score of 97% and a standard deviation of 0.018, demonstrating significant results. The dataset is augmented using Generative Adversarial Networks, resulting in improved accuracies for all models. Among them, the RF-XGB-SVM model outperformed the rest with an accuracy score of 99.58%.


Assuntos
Inteligência Artificial , Condução de Veículo , Redes Neurais de Computação , Radar , Máquina de Vetores de Suporte , Humanos , Algoritmos , Aprendizado de Máquina
5.
Sensors (Basel) ; 24(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38676243

RESUMO

Individuals with obstructive sleep apnea (OSA) face increased accident risks due to excessive daytime sleepiness. PERCLOS, a recognized drowsiness detection method, encounters challenges from image quality, eyewear interference, and lighting variations, impacting its performance, and requiring validation through physiological signals. We propose visual-based scoring using adaptive thresholding for eye aspect ratio with OpenCV for face detection and Dlib for eye detection from video recordings. This technique identified 453 drowsiness (PERCLOS ≥ 0.3 || CLOSDUR ≥ 2 s) and 474 wakefulness episodes (PERCLOS < 0.3 and CLOSDUR < 2 s) among fifty OSA drivers in a 50 min driving simulation while wearing six-channel EEG electrodes. Applying discrete wavelet transform, we derived ten EEG features, correlated them with visual-based episodes using various criteria, and assessed the sensitivity of brain regions and individual EEG channels. Among these features, theta-alpha-ratio exhibited robust mapping (94.7%) with visual-based scoring, followed by delta-alpha-ratio (87.2%) and delta-theta-ratio (86.7%). Frontal area (86.4%) and channel F4 (75.4%) aligned most episodes with theta-alpha-ratio, while frontal, and occipital regions, particularly channels F4 and O2, displayed superior alignment across multiple features. Adding frontal or occipital channels could correlate all episodes with EEG patterns, reducing hardware needs. Our work could potentially enhance real-time drowsiness detection reliability and assess fitness to drive in OSA drivers.


Assuntos
Condução de Veículo , Eletroencefalografia , Apneia Obstrutiva do Sono , Humanos , Apneia Obstrutiva do Sono/fisiopatologia , Apneia Obstrutiva do Sono/diagnóstico , Eletroencefalografia/métodos , Masculino , Feminino , Pessoa de Meia-Idade , Fases do Sono/fisiologia , Adulto , Vigília/fisiologia , Análise de Ondaletas
6.
Hum Factors ; : 187208241228049, 2024 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-38247319

RESUMO

OBJECTIVE: This article tackles the issue of correct data interpretation when using stimulus detection tasks for determining the operator's workload. BACKGROUND: Stimulus detection tasks are a relative simple and inexpensive means of measuring the operator's state. While stimulus detection tasks may be better geared to measure conditions of high workload, adopting this approach for the assessment of low workload may be more problematic. METHOD: This mini-review details the use of common stimulus detection tasks and their contributions to the Human Factors practice. It also borrows from the conceptual framework of the inverted-U shape model to discuss the issue of data interpretation. RESULTS: The evidence being discussed here highlights a clear limitation of stimulus detection task paradigms. CONCLUSION: There is an inherent risk in using a unidimensional tool like stimulus detection tasks as the primary source of information for determining the operator's psychophysiological state. APPLICATION: Two recommendations are put forward to Human Factors researchers and practitioners dealing with the interpretation conundrum of dealing with stimulus detection tasks.

7.
J Sleep Res ; : e14054, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37849039

RESUMO

Pressing the snooze button is a common way to start the day, but little is known about this behaviour. Through two studies we determined predictors and effects of snoozing. In Study 1 (n = 1732) respondents described their waking habits, confirming that snoozing is widespread, especially in younger individuals and later chronotypes. Morning drowsiness and shorter sleep were also more common for those who snooze. Study 2 was a within-subjects laboratory study (with polysomnography) on habitual snoozers (n = 31), showing that 30 min of snoozing improved or did not affect performance on cognitive tests directly upon rising compared to an abrupt awakening. Bayes factors indicate varying strengths of this evidence. Snoozing resulted in about 6 min of lost sleep, while preventing awakenings from slow-wave sleep (N3). There were no clear effects of snoozing on the cortisol awakening response, morning sleepiness, mood, or overnight sleep architecture. A brief snooze period may thus help alleviate sleep inertia, without substantially disturbing sleep, for late chronotypes and those with morning drowsiness.

8.
Methods ; 202: 173-184, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-33901644

RESUMO

Driver drowsiness is one of the main factors leading to road fatalities and hazards in the transportation industry. Electroencephalography (EEG) has been considered as one of the best physiological signals to detect drivers' drowsy states, since it directly measures neurophysiological activities in the brain. However, designing a calibration-free system for driver drowsiness detection with EEG is still a challenging task, as EEG suffers from serious mental and physical drifts across different subjects. In this paper, we propose a compact and interpretable Convolutional Neural Network (CNN) to discover shared EEG features across different subjects for driver drowsiness detection. We incorporate the Global Average Pooling (GAP) layer in the model structure, allowing the Class Activation Map (CAM) method to be used for localizing regions of the input signal that contribute most for classification. Results show that the proposed model can achieve an average accuracy of 73.22% on 11 subjects for 2-class cross-subject EEG signal classification, which is higher than conventional machine learning methods and other state-of-art deep learning methods. It is revealed by the visualization technique that the model has learned biologically explainable features, e.g., Alpha spindles and Theta burst, as evidence for the drowsy state. It is also interesting to see that the model uses artifacts that usually dominate the wakeful EEG, e.g., muscle artifacts and sensor drifts, to recognize the alert state. The proposed model illustrates a potential direction to use CNN models as a powerful tool to discover shared features related to different mental states across different subjects from EEG signals.


Assuntos
Eletroencefalografia , Vigília , Artefatos , Humanos , Aprendizado de Máquina , Redes Neurais de Computação
9.
Hum Psychopharmacol ; 38(4): e2870, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37291082

RESUMO

INTRODUCTION: Driver drowsiness detection technology that assesses eye blinks is increasingly being used as a safety intervention in the transport industry. It is unclear how alcohol consumption to common legal driving limits impacts upon this technology. The aim of the study was to assess the impact of a blood alcohol content (BAC) of 0.05% and of 0.08% on drowsiness detection technology during simulated driving. METHODS: Participants completed a 60-min driving simulation and sleepiness questionnaire under three conditions: 1-0.00% BAC, 2-0.05% BAC and 3-0.08% BAC. During the driving simulation task participants wore a commercial eye blink drowsiness detection technology (Optalert) with the drowsiness alarms silenced. RESULTS: Twelve participants (3 female) completed all alcohol conditions. Relative to baseline, all eye blink parameters were affected at 0.08% BAC (all p < 0.05), whereas 0.05% BAC only affected the composite eye blink drowsiness measure (the Johns Drowsiness Scale). CONCLUSIONS: Alcohol consumption to 0.08% BAC impaired eye blink measures to a level that would be considered a moderate drowsiness risk. Therefore, employers should be aware that drowsiness alerts from these technologies may increase after alcohol consumption.


Assuntos
Condução de Veículo , Sonolência , Humanos , Feminino , Vigília , Piscadela , Consumo de Bebidas Alcoólicas , Concentração Alcoólica no Sangue , Tecnologia
10.
Sensors (Basel) ; 23(6)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36991654

RESUMO

Driving safely is crucial to avoid death, injuries, or financial losses that can be sustained in an accident. Thus, a driver's physical state should be monitored to prevent accidents, rather than vehicle-based or behavioral measurements, and provide reliable information in this regard. Electrocardiography (ECG), electroencephalography (EEG), electrooculography (EOG), and surface electromyography (sEMG) signals are used to monitor a driver's physical state during a drive. The purpose of this study was to detect driver hypovigilance (drowsiness, fatigue, as well as visual and cognitive inattention) using signals collected from 10 drivers while they were driving. EOG signals from the driver were preprocessed to remove noise, and 17 features were extracted. ANOVA (analysis of variance) was used to select statistically significant features that were then loaded into a machine learning algorithm. We then reduced the features by using principal component analysis (PCA) and trained three classifiers: support vector machine (SVM), k-nearest neighbor (KNN), and ensemble. A maximum accuracy of 98.7% was obtained for the classification of normal and cognitive classes under the category of two-class detection. Upon considering hypovigilance states as five-class, a maximum accuracy of 90.9% was achieved. In this case, the number of detection classes increased, resulting in a reduction in the accuracy of detecting more driver states. However, with the possibility of incorrect identification and the presence of issues, the ensemble classifier's performance produced an enhanced accuracy when compared to others.


Assuntos
Condução de Veículo , Eletroculografia , Vigília , Eletromiografia , Eletroencefalografia/métodos , Aprendizado de Máquina , Máquina de Vetores de Suporte
11.
Sensors (Basel) ; 23(3)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36772333

RESUMO

The amount of road accidents caused by driver drowsiness is one of the world's major challenges. These accidents lead to numerous fatal and non-fatal injuries which impose substantial financial strain on individuals and governments every year. As a result, it is critical to prevent catastrophic accidents and reduce the financial burden on society caused by driver drowsiness. The research community has primarily focused on two approaches to identify driver drowsiness during the last decade: intrusive and non-intrusive. The intrusive approach includes physiological measures, and the non-intrusive approach includes vehicle-based and behavioral measures. In an intrusive approach, sensors are used to detect driver drowsiness by placing them on the driver's body, whereas in a non-intrusive approach, a camera is used for drowsiness detection by identifying yawning patterns, eyelid movement and head inclination. Noticeably, most research has been conducted in driver drowsiness detection methods using only single measures that failed to produce good outcomes. Furthermore, these measures were only functional in certain conditions. This paper proposes a model that combines the two approaches, non-intrusive and intrusive, to detect driver drowsiness. Behavioral measures as a non-intrusive approach and sensor-based physiological measures as an intrusive approach are combined to detect driver drowsiness. The proposed hybrid model uses AI-based Multi-Task Cascaded Convolutional Neural Networks (MTCNN) as a behavioral measure to recognize the driver's facial features, and the Galvanic Skin Response (GSR) sensor as a physiological measure to collect the skin conductance of the driver that helps to increase the overall accuracy. Furthermore, the model's efficacy has been computed in a simulated environment. The outcome shows that the proposed hybrid model is capable of identifying the transition from awake to a drowsy state in the driver in all conditions with the efficacy of 91%.


Assuntos
Condução de Veículo , Vigília , Humanos , Vigília/fisiologia , Acidentes de Trânsito/prevenção & controle , Redes Neurais de Computação , Resposta Galvânica da Pele
12.
Sensors (Basel) ; 23(12)2023 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-37420860

RESUMO

Driver drowsiness is one of the main causes of traffic accidents today. In recent years, driver drowsiness detection has suffered from issues integrating deep learning (DL) with Internet-of-things (IoT) devices due to the limited resources of IoT devices, which pose a challenge to fulfilling DL models that demand large storage and computation. Thus, there are challenges to meeting the requirements of real-time driver drowsiness detection applications that need short latency and lightweight computation. To this end, we applied Tiny Machine Learning (TinyML) to a driver drowsiness detection case study. In this paper, we first present an overview of TinyML. After conducting some preliminary experiments, we proposed five lightweight DL models that can be deployed on a microcontroller. We applied three DL models: SqueezeNet, AlexNet, and CNN. In addition, we adopted two pretrained models (MobileNet-V2 and MobileNet-V3) to find the best model in terms of size and accuracy results. After that, we applied the optimization methods to DL models using quantization. Three quantization methods were applied: quantization-aware training (QAT), full-integer quantization (FIQ), and dynamic range quantization (DRQ). The obtained results in terms of the model size show that the CNN model achieved the smallest size of 0.05 MB using the DRQ method, followed by SqueezeNet, AlexNet MobileNet-V3, and MobileNet-V2, with 0.141 MB, 0.58 MB, 1.16 MB, and 1.55 MB, respectively. The result after applying the optimization method was 0.9964 accuracy using DRQ in the MobileNet-V2 model, which outperformed the other models, followed by the SqueezeNet and AlexNet models, with 0.9951 and 0.9924 accuracies, respectively, using DRQ.


Assuntos
Aprendizado Profundo , Internet das Coisas , Acidentes de Trânsito , Conscientização , Aprendizado de Máquina
13.
Sensors (Basel) ; 23(7)2023 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-37050534

RESUMO

Drowsiness poses a serious challenge to road safety and various in-cabin sensing technologies have been experimented with to monitor driver alertness. Cameras offer a convenient means for contactless sensing, but they may violate user privacy and require complex algorithms to accommodate user (e.g., sunglasses) and environmental (e.g., lighting conditions) constraints. This paper presents a lightweight convolution neural network that measures eye closure based on eye images captured by a wearable glass prototype, which features a hot mirror-based design that allows the camera to be installed on the glass temples. The experimental results showed that the wearable glass prototype, with the neural network in its core, was highly effective in detecting eye blinks. The blink rate derived from the glass output was highly consistent with an industrial gold standard EyeLink eye-tracker. As eye blink characteristics are sensitive measures of driver drowsiness, the glass prototype and the lightweight neural network presented in this paper would provide a computationally efficient yet viable solution for real-world applications.


Assuntos
Condução de Veículo , Dispositivos Eletrônicos Vestíveis , Fases do Sono , Vigília , Piscadela
14.
Sensors (Basel) ; 23(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36850472

RESUMO

Driver fatigue reduces the safety of traditional driving and limits the widespread adoption of self-driving cars; hence, the monitoring and early detection of drivers' drowsiness plays a key role in driving automation. When representing the drowsiness indicators as large feature vectors, fitting a machine learning model to the problem becomes challenging, and the problem's perspicuity decreases, making dimensionality reduction crucial in practice. For this reason, we propose an embedded feature selection algorithm that can be later utilized as a building block in the system development of a neural network-based drowsiness detector. We have adopted a technique: a so-called Feature Prune Layer is placed in front of the first layer in the architecture; as a result, its weights change regarding the importance of the corresponding input features and are deleted iteratively until the desired number is reached. We test the algorithm on EEG data, as it is one of the best indicators of drowsiness based on the literature. The proposed FS algorithm is able to reduce the original feature set by 95% with only 1% degradation in precision, while the precision increases by 1.5% and 2.7% respectively when selecting the top 10% and top 20% of the initial features. Moreover, the proposed method outperforms the widely popular Principal Component Analysis and the Chi-squared test when reducing the original feature set by 95%: it achieves 24.3% and 3.2% higher precision respectively.

15.
Sensors (Basel) ; 23(21)2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37960441

RESUMO

Detecting drowsiness among drivers is critical for ensuring road safety and preventing accidents caused by drowsy or fatigued driving. Research on yawn detection among drivers has great significance in improving traffic safety. Although various studies have taken place where deep learning-based approaches are being proposed, there is still room for improvement to develop better and more accurate drowsiness detection systems using behavioral features such as mouth and eye movement. This study proposes a deep neural network architecture for drowsiness detection employing a convolutional neural network (CNN) for driver drowsiness detection. Experiments involve using the DLIB library to locate key facial points to calculate the mouth aspect ratio (MAR). To compensate for the small dataset, data augmentation is performed for the 'yawning' and 'no_yawning' classes. Models are trained and tested involving the original and augmented dataset to analyze the impact on model performance. Experimental results demonstrate that the proposed CNN model achieves an average accuracy of 96.69%. Performance comparison with existing state-of-the-art approaches shows better performance of the proposed model.


Assuntos
Condução de Veículo , Redes Neurais de Computação , Vigília , Acidentes de Trânsito/prevenção & controle , Movimentos Oculares
16.
Sensors (Basel) ; 23(14)2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37514638

RESUMO

A high-performance Driver State Monitoring (DSM) application for the detection of driver drowsiness is presented in this paper. The popular Ensemble of Regression Trees (ERTs) machine learning method has been employed for the alignment of 68 facial landmarks. Open-source implementation of ERTs for facial shape alignment has been ported to different platforms and adapted for the acceleration of the frame processing speed using reconfigurable hardware. Reducing the frame processing latency saves time that can be used to apply frame-to-frame facial shape coherency rules. False face detection and false shape estimations can be ignored for higher robustness and accuracy in the operation of the DSM application without sacrificing the frame processing rate that can reach 65 frames per second. The sensitivity and precision in yawning recognition can reach 93% and 97%, respectively. The implementation of the employed DSM algorithm in reconfigurable hardware is challenging since the kernel arguments require large data transfers and the degree of data reuse in the computational kernel is low. Hence, unconventional hardware acceleration techniques have been employed that can also be useful for the acceleration of several other machine learning applications that require large data transfers to their kernels with low reusability.

17.
Sensors (Basel) ; 23(14)2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37514754

RESUMO

Drowsy driving can significantly affect driving performance and overall road safety. Statistically, the main causes are decreased alertness and attention of the drivers. The combination of deep learning and computer-vision algorithm applications has been proven to be one of the most effective approaches for the detection of drowsiness. Robust and accurate drowsiness detection systems can be developed by leveraging deep learning to learn complex coordinate patterns using visual data. Deep learning algorithms have emerged as powerful techniques for drowsiness detection because of their ability to learn automatically from given inputs and feature extractions from raw data. Eye-blinking-based drowsiness detection was applied in this study, which utilized the analysis of eye-blink patterns. In this study, we used custom data for model training and experimental results were obtained for different candidates. The blinking of the eye and mouth region coordinates were obtained by applying landmarks. The rate of eye-blinking and changes in the shape of the mouth were analyzed using computer-vision techniques by measuring eye landmarks with real-time fluctuation representations. An experimental analysis was performed in real time and the results proved the existence of a correlation between yawning and closed eyes, classified as drowsy. The overall performance of the drowsiness detection model was 95.8% accuracy for drowsy-eye detection, 97% for open-eye detection, 0.84% for yawning detection, 0.98% for right-sided falling, and 100% for left-sided falling. Furthermore, the proposed method allowed a real-time eye rate analysis, where the threshold served as a separator of the eye into two classes, the "Open" and "Closed" states.


Assuntos
Condução de Veículo , Aprendizado Profundo , Piscadela , Fases do Sono , Vigília , Computadores
18.
Sensors (Basel) ; 23(8)2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37112345

RESUMO

The majority of car accidents worldwide are caused by drowsy drivers. Therefore, it is important to be able to detect when a driver is starting to feel drowsy in order to warn them before a serious accident occurs. Sometimes, drivers are not aware of their own drowsiness, but changes in their body signals can indicate that they are getting tired. Previous studies have used large and intrusive sensor systems that can be worn by the driver or placed in the vehicle to collect information about the driver's physical status from a variety of signals that are either physiological or vehicle-related. This study focuses on the use of a single wrist device that is comfortable for the driver to wear and appropriate signal processing to detect drowsiness by analyzing only the physiological skin conductance (SC) signal. To determine whether the driver is drowsy, the study tests three ensemble algorithms and finds that the Boosting algorithm is the most effective in detecting drowsiness with an accuracy of 89.4%. The results of this study show that it is possible to identify when a driver is drowsy using only signals from the skin on the wrist, and this encourages further research to develop a real-time warning system for early detection of drowsiness.


Assuntos
Condução de Veículo , Vigília/fisiologia , Algoritmos , Conscientização , Aprendizado de Máquina
19.
Rev Neurol (Paris) ; 179(7): 715-726, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37563022

RESUMO

Hypersomnolence is a major public health issue given its high frequency, its impact on academic/occupational functioning and on accidentology, as well as its heavy socio-economic burden. The positive and aetiological diagnosis is crucial, as it determines the therapeutic strategy. It must consider the following aspects: i) hypersomnolence is a complex concept referring to symptoms as varied as excessive daytime sleepiness, excessive need for sleep, sleep inertia, or drowsiness, all of which warrant specific dedicated investigations; ii) the boundary between physiological and abnormal hypersomnolence is blurred, since most symptoms can be encountered in the general population to varying degrees without being considered as pathological, meaning that their severity, frequency, context of occurrence and related impairment need to be carefully assessed; iii) investigation of hypersomnolence relies on scales/questionnaires as well as behavioural and neurophysiological tests, which measure one or more dimensions, keeping in mind the possible discrepancy between objective and subjective assessment; iv) aetiological reasoning is driven by knowledge of the main sleep regulation mechanisms, epidemiology, and associated symptoms. The need to assess hypersomnolence is growing, both for its management, and for assessing the efficacy of treatments. The landscape of tools available for investigating hypersomnolence is constantly evolving, in parallel with research into sleep physiology and technical advances. These investigations face the challenges of reconciling subjective perception and objective data, making tools accessible to as many people as possible and predicting the risk of accidents.


Assuntos
Apatia , Distúrbios do Sono por Sonolência Excessiva , Humanos , Polissonografia/efeitos adversos , Distúrbios do Sono por Sonolência Excessiva/diagnóstico , Distúrbios do Sono por Sonolência Excessiva/etiologia , Distúrbios do Sono por Sonolência Excessiva/epidemiologia , Sono/fisiologia , Inquéritos e Questionários
20.
Neuroimage ; 251: 119003, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35176491

RESUMO

Falling asleep is a dynamical process that is poorly defined. The period preceding sleep, characterized by the progressive alteration of behavioral responses to the environment, which may last several minutes, has no electrophysiological definition, and is embedded in the first stage of sleep (N1). We aimed at better characterizing this drowsiness period looking for neurophysiological predictors of responsiveness using electro and magneto-encephalography. Healthy participants were recorded when falling asleep, while they were presented with continuous auditory stimulations and asked to respond to deviant sounds. We analysed brain responses to sounds and markers of ongoing activity, such as information and connectivity measures, in relation to rapid fluctuations of brain rhythms observed at sleep onset and participants' capabilities to respond. Results reveal a drowsiness period distinct from wakefulness and sleep, from alpha rhythms to the first sleep spindles, characterized by diverse and transient brain states that come on and off at the scale of a few seconds and closely reflects, mainly through neural processes in alpha and theta bands, decreasing probabilities to be responsive to external stimuli. Results also show that the global P300 was only present in responsive trials, regardless of vigilance states. A better consideration of the drowsiness period through a formalized classification and its specific brain markers such as described here should lead to significant advances in vigilance assessment in the future, in medicine and ecological environments.


Assuntos
Eletroencefalografia , Fases do Sono , Estimulação Acústica/métodos , Eletroencefalografia/métodos , Humanos , Sono/fisiologia , Fases do Sono/fisiologia , Vigília/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa