Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 21(20)2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-33053834

RESUMO

Cyclin-dependent kinase 8 (CDK8) and its regulatory partner Cyclin C (CycC) play conserved roles in modulating RNA polymerase II (Pol II)-dependent gene expression. To understand the structure and function relations of CDK8, we analyzed the structures of human and Drosophila CDK8 proteins using molecular dynamics simulations, combined with functional analyses in Drosophila. Specifically, we evaluated the structural differences between hCDK8 and dCDK8 to predict the effects of the LXXLL motif mutation (AQKAA), the P154L mutations, and drug binding on local structures of the CDK8 proteins. First, we have observed that both the LXXLL motif and the kinase activity of CDK8 are required for the normal larval-to-pupal transition in Drosophila. Second, our molecular dynamic analyses have revealed that hCDK8 has higher hydrogen bond occupation of His149-Asp151 and Asp151-Asn156 than dCDK8. Third, the substructure of Asp282, Phe283, Arg285, Thr287 and Cys291 can distinguish human and Drosophila CDK8 structures. In addition, there are two hydrogen bonds in the LXXLL motif: a lower occupation between L312 and L315, and a relatively higher occupation between L312 and L316. Human CDK8 has higher hydrogen bond occupation between L312 and L316 than dCDK8. Moreover, L312, L315 and L316 in the LXXLL motif of CDK8 have the specific pattern of hydrogen bonds and geometries, which could be crucial for the binding to nuclear receptors. Furthermore, the P154L mutation dramatically decreases the hydrogen bond between L312 and L315 in hCDK8, but not in dCDK8. The mutations of P154L and AQKAA modestly alter the local structures around residues 154. Finally, we identified the inhibitor-induced conformational changes of hCDK8, and our results suggest a structural difference in the drug-binding site between hCDK8 and dCDK8. Taken together, these results provide the structural insights into the roles of the LXXLL motif and the kinase activity of CDK8 in vivo.


Assuntos
Motivos de Aminoácidos , Sítios de Ligação , Quinase 8 Dependente de Ciclina/química , Proteínas de Drosophila/química , Modelos Moleculares , Domínios e Motivos de Interação entre Proteínas , Inibidores de Proteínas Quinases/química , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Quinase 8 Dependente de Ciclina/antagonistas & inibidores , Proteínas de Drosophila/antagonistas & inibidores , Humanos , Ligação de Hidrogênio , Ligantes , Conformação Molecular , Mutação , Ligação Proteica , Inibidores de Proteínas Quinases/farmacologia , Especificidade da Espécie , Relação Estrutura-Atividade
2.
Cell Physiol Biochem ; 52(5): 1223-1235, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31001961

RESUMO

BACKGROUND/AIMS: The two-pore-domain potassium channel TASK-1 regulates atrial action potential duration. Due to the atrium-specific expression of TASK-1 in the human heart and the functional upregulation of TASK-1 currents in atrial fibrillation (AF), TASK-1 represents a promising target for the treatment of AF. Therefore, detailed knowledge of the molecular determinants of TASK-1 inhibition may help to identify new drugs for the future therapy of AF. In the current study, the molecular determinants of TASK-1 inhibition by the potent and antiarrhythmic compound A293 (AVE1231) were studied in detail. METHODS: Alanine-scanning mutagenesis together with two-electrode voltage-clamp recordings were combined with in silico docking experiments. RESULTS: Here, we have identified Q126 located in the M2 segment together with L239 and N240 of the M4 segment as amino acids essential for the A293-mediated inhibition of TASK-1. These data indicate a binding site which is different to that of A1899 for which also residues of the pore signature sequence and the late M4 segments are essential. Using in silico docking experiments, we propose a binding site at the lower end of the cytosolic pore, located at the entry to lateral side fenestrations of TASK-1. Strikingly, TASK-1 inhibition by the low affinity antiarrhythmic TASK-1 blockers propafenone, amiodarone and carvedilol was also strongly diminished by mutations at this novel binding site. CONCLUSION: We have identified the A293 binding site in the central cavity of TASK-1 and propose that this site might represent a conserved site of action for many low affinity antiarrhythmic TASK-1 blockers.


Assuntos
Antiarrítmicos/química , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/química , Canais de Potássio de Domínios Poros em Tandem/antagonistas & inibidores , Canais de Potássio de Domínios Poros em Tandem/química , Substituição de Aminoácidos , Animais , Sítios de Ligação , Humanos , Mutagênese Sítio-Dirigida , Mutação de Sentido Incorreto , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Canais de Potássio de Domínios Poros em Tandem/genética , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Xenopus laevis
3.
Int J Mol Sci ; 18(8)2017 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-28792473

RESUMO

Taxol®, an antitumor drug with significant activity, is the first microtubule stabilizing agent described in the literature. This short review of the mechanism of action of Taxol® emphasizes the research done in the Horwitz' laboratory. It discusses the contribution of photoaffinity labeled analogues of Taxol® toward our understanding of the binding site of the drug on the microtubule. The importance of hydrogen/deuterium exchange experiments to further our insights into the stabilization of microtubules by Taxol® is addressed. The development of drug resistance, a major problem that arises in the clinic, is discussed. Studies describing differential drug binding to distinct ß-tubulin isotypes are presented. Looking forward, it is suggested that the ß-tubulin isotype content of a tumor may influence its responses to Taxol®.


Assuntos
Paclitaxel/farmacologia , Moduladores de Tubulina/farmacologia , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Sítios de Ligação , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos , Humanos , Microtúbulos/química , Microtúbulos/metabolismo , Paclitaxel/análogos & derivados , Paclitaxel/química , Ligação Proteica , Isoformas de Proteínas , Subunidades Proteicas , Relação Estrutura-Atividade , Moduladores de Tubulina/química
4.
Proteome Sci ; 14(1): 12, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27610045

RESUMO

BACKGROUND: Epidermal growth factor receptor (EGFR) mutation-induced drug resistance is a difficult problem in lung cancer treatment. Studying the molecular mechanisms of drug resistance can help to develop corresponding treatment strategies and benefit new drug design. METHODS: In this study, Rosetta was employed to model the EGFR mutant structures. Then Amber was carried out to conduct molecular dynamics (MD) simulation. Afterwards, we used Computational Geometry Algorithms Library (CGAL) to compute the alpha shape model of the mutants. RESULTS: We analyzed the EGFR mutation-induced drug resistance based on the motion trajectories obtained from MD simulation. We computed alpha shape model of all the trajectory frames for each mutation type. Solid angle was used to characterize the curvature of the atoms at the drug binding site. We measured the knob level of the drug binding pocket of each mutant from two ways and analyzed its relationship with the drug response level. Results show that 90 % of the mutants can be grouped correctly by setting a certain knob level threshold. CONCLUSIONS: There is a strong correlation between the geometric properties of the drug binding pocket of the EGFR mutants and the corresponding drug responses, which can be used to predict the response of a new EGFR mutant to a drug molecule.

5.
Comput Biol Chem ; 112: 108117, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38852360

RESUMO

Understanding the mechanisms underlying interactions between drugs and target proteins is critical for drug discovery. In our earlier studies, we introduced the Triangular Spatial Relationship (TSR)-based algorithm, which enables the representation of a protein's 3D structure as a vector of integers (TSR keys). These TSR keys correspond to substructures of the 3D structure of a protein and are computed based on the triangles constructed by all possible triples of Cα atoms within the protein. In this study, we report on a new TSR-based algorithm for probing drug and target interactions. Specifically, we have extended the previous algorithm in three novel directions: TSR keys for representing the 3D structure of a drug or a ligand, cross TSR keys between drugs and their targets and intra-residual TSR keys for phosphorylated amino acids. The outcomes illustrate the key contributions as follows: (i) The TSR-based method, which uses the TSR keys as features, is unique in its capability to interpret hierarchical relationships of drugs as well as drug - target complexes using common and specific TSR keys. (ii) The method can distinguish not only the binding sites from the rest of the protein structures, but also the binding sites of primary targets from those of off-targets. (iii) The method has the potential to correlate the 3D structures of drugs with their functions. (iv) Representation of 3D structures by TSR keys has its unique advantage in terms of ease of making searching for similar substructures across structure datasets easier. In summary, this study presents a novel computational methodology, with significant advantages, for providing insights into the mechanism underlying drug and target interactions.


Assuntos
Algoritmos , Proteínas , Preparações Farmacêuticas/química , Proteínas/química , Ligantes , Estrutura Molecular , Sítios de Ligação , Descoberta de Drogas
6.
J Biomol Struct Dyn ; : 1-13, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212976

RESUMO

The robust structural nature of human serum albumin (HSA) is responsible for its multifarious functional property. The site specific glycation of HSA due to hyperglycaemia (excess glucose) causes structural changes which have an impact on the functioning of the protein. This work investigates the effects of glucose-mediated glycation in the altered inter-domain motion, distorted binding site conformation and modified hydration patterns, Trp214 orientation, and secondary structure transition using simulation approach. Here we have observed an increase of turns in the helices of glycated HSA, which modulates the open-close conformation of Sudlow I & II. The secondary structure changes of glycated HSA indicate plausible reduction in the alpha helical content in the helices which participates in ligand binding. It also affects geometrical features of drug binding sites (Sudlow I and II) such as volume and hydration. We found that glycation disturbs domain specific mobility patterns of HSA, a substantial feature for albumin drug binding ability which is also correlated with changes in the local environment of Trp214.Communicated by Ramaswamy H. Sarma.

7.
J Photochem Photobiol B ; 234: 112542, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35973286

RESUMO

Human serum albumin (HSA) is the primary drug carrier in the blood plasma. Here, I aimed to show that two ligands can be accommodated simultaneously in the binding site-I of HSA. To do so, I studied the interaction inside the protein among site-I ligands of HSA via fluorescence resonance energy transfer (FRET), synchronous fluorescence, red edge excitation shift (REES), and induced circular dichroism (ICD). Warfarin (WAR), coumarin-153 (C153), 6-(p-toluidino)-2-naphthalenesulfonic acid sodium salt (TNS), dansylglycine (DGY), and 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM) were enrolled in the investigation. I found that WAR can transfer energy to C153 only in the presence of the protein. In addition, the presence of WAR at site-I altered the protein microenvironment felt by C153. The alteration was detected by measuring the synchronous fluorescence, REES, and ICD in C153. The findings were validated by measuring the energy transfer from TNS to DCM and the alteration in synchronous fluorescence and REES. FRET was not observed using WAR as donor and DGY as acceptor. The result is consistent, as DGY is a site-II ligand at a higher WAR distance. In all studied cases, the effects were only observed in the presence of HSA. In conclusion, the protein acted as a scaffold approximating the ligands. These findings prove that more than one ligand can simultaneously be complex at site-I of HSA.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Albumina Sérica Humana , Sítios de Ligação , Dicroísmo Circular , Corantes Fluorescentes , Humanos , Ligantes , Ligação Proteica , Albumina Sérica/metabolismo , Albumina Sérica Humana/metabolismo , Espectrometria de Fluorescência , Termodinâmica
8.
FEBS Open Bio ; 11(4): 1084-1092, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33565718

RESUMO

P-glycoprotein (Pgp) detoxifies cells by exporting hundreds of chemically dissimilar hydrophobic and amphipathic compounds and is implicated in multidrug resistance (MDR) in the treatment of cancers. Photoaffinity labeling of plasma membrane vesicles of MDR CHO B30 cells with the anthracycline [125 I]-iodomycin, subsequent sequential cleavage with BNPS-skatol and endoproteinase Lys-C, and the Edman sequencing of the purified photoaffinity-labeled peptide identified the lysine residue at position 268 in the hamster Pgp primary sequence as the major photobinding site of iodomycin in CHO B30 cells. Lysine 268 is located adjacent to the cytosolic terminus of transmembrane 5. According to thermodynamic and kinetic analyses, this location should present the equilibrium binding site of ATP-free Pgp for daunomycin and iodomycin in B30 cells.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/química , Sítios de Ligação , Daunorrubicina/análogos & derivados , Lisina/química , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Células CHO , Cricetinae , Cricetulus , Daunorrubicina/química , Daunorrubicina/metabolismo , Humanos , Radioisótopos do Iodo/química , Radioisótopos do Iodo/metabolismo , Lisina/metabolismo , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/farmacologia , Peptídeos/química , Ligação Proteica , Relação Estrutura-Atividade
9.
Genomics Proteomics Bioinformatics ; 19(6): 986-997, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33794377

RESUMO

Current FDA-approved kinase inhibitors cause diverse adverse effects, some of which are due to the mechanism-independent effects of these drugs. Identifying these mechanism-independent interactions could improve drug safety and support drug repurposing. Here, we develop iDTPnd (integrated Drug Target Predictor with negative dataset), a computational approach for large-scale discovery of novel targets for known drugs. For a given drug, we construct a positive structural signature as well as a negative structural signature that captures the weakly conserved structural features of drug-binding sites. To facilitate assessment of unintended targets, iDTPnd also provides a docking-based interaction score and its statistical significance. We confirm the interactions of sorafenib, imatinib, dasatinib, sunitinib, and pazopanib with their known targets at a sensitivity of 52% and a specificity of 55%. We also validate 10 predicted novel targets by using in vitro experiments. Our results suggest that proteins other than kinases, such as nuclear receptors, cytochrome P450, and MHC class I molecules, can also be physiologically relevant targets of kinase inhibitors. Our method is general and broadly applicable for the identification of protein-small molecule interactions, when sufficient drug-target 3D data are available. The code for constructing the structural signatures is available at https://sfb.kaust.edu.sa/Documents/iDTP.zip.


Assuntos
Proteínas , Proteínas/metabolismo
10.
Methods Mol Biol ; 1598: 157-197, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28508361

RESUMO

Photoaffinity labeling techniques have been used for decades to identify drug binding sites and to study the structural biology of allosteric transitions in transmembrane proteins including pentameric ligand-gated ion channels (pLGIC). In a typical photoaffinity labeling experiment, to identify drug binding sites, UV light is used to introduce a covalent bond between a photoreactive ligand (which upon irradiation at the appropriate wavelength converts to a reactive intermediate) and amino acid residues that lie within its binding site. Then protein chemistry and peptide microsequencing techniques are used to identify these amino acids within the protein primary sequence. These amino acid residues are located within homology models of the receptor to identify the binding site of the photoreactive probe. Molecular modeling techniques are then used to model the binding of the photoreactive probe within the binding site using docking protocols. Photoaffinity labeling directly identifies amino acids that contribute to drug binding sites regardless of their location within the protein structure and distinguishes them from amino acids that are only involved in the transduction of the conformational changes mediated by the drug, but may not be part of its binding site (such as those identified by mutational studies). Major limitations of photoaffinity labeling include the availability of photoreactive ligands that faithfully mimic the properties of the parent molecule and protein preparations that supply large enough quantities suitable for photoaffinity labeling experiments. When the ligand of interest is not intrinsically photoreactive, chemical modifications to add a photoreactive group to the parent drug, and pharmacological evaluation of these chemical modifications become necessary. With few exceptions, expression and affinity-purification of proteins are required prior to photolabeling. Methods to isolate milligram quantities of highly enriched pLGIC suitable for photoaffinity labeling experiments have been developed. In this chapter, we discuss practical aspects of experimental strategies to identify allosteric modulator binding sites in pLGIC using photoaffinity labeling.


Assuntos
Descoberta de Drogas , Canais Iônicos de Abertura Ativada por Ligante/química , Canais Iônicos de Abertura Ativada por Ligante/metabolismo , Ligantes , Marcadores de Fotoafinidade , Proteômica , Sítio Alostérico , Animais , Sítios de Ligação , Descoberta de Drogas/métodos , Humanos , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Ligação Proteica , Proteômica/métodos , Relação Estrutura-Atividade
11.
Biochem Pharmacol ; 101: 40-53, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26686578

RESUMO

P-glycoprotein (P-gp) is a member of the ATP-binding cassette transporter superfamily. This multidrug transporter utilizes energy from ATP hydrolysis for the efflux of a variety of hydrophobic and amphipathic compounds including anticancer drugs. Most of the substrates and modulators of P-gp stimulate its basal ATPase activity, although some inhibit it. The molecular mechanisms that are in play in either case are unknown. In this report, mutagenesis and molecular modeling studies of P-gp led to the identification of a pair of phenylalanine-tyrosine structural motifs in the transmembrane region that mediate the inhibition of ATP hydrolysis by certain drugs (zosuquidar, elacridar and tariquidar), with high affinity (IC50's ranging from 10 to 30nM). Upon mutation of any of these residues, drugs that inhibit the ATPase activity of P-gp switch to stimulation of the activity. Molecular modeling revealed that the phenylalanine residues F978 and F728 interact with tyrosine residues Y953 and Y310, respectively, in an edge-to-face conformation, which orients the tyrosines in such a way that they establish hydrogen-bond contacts with the inhibitor. Biochemical investigations along with transport studies in intact cells showed that the inhibitors bind at a high affinity site to produce inhibition of ATP hydrolysis and transport function. Upon mutation, they bind at lower affinity sites, stimulating ATP hydrolysis and only poorly inhibiting transport. These results also reveal that screening chemical compounds for their ability to inhibit the basal ATP hydrolysis can be a reliable tool to identify modulators with high affinity for P-gp.


Assuntos
Acridinas/farmacologia , Trifosfato de Adenosina/metabolismo , Dibenzocicloeptenos/farmacologia , Moduladores de Transporte de Membrana/farmacologia , Modelos Moleculares , Quinolinas/farmacologia , Tetra-Hidroisoquinolinas/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/antagonistas & inibidores , Subfamília B de Transportador de Cassetes de Ligação de ATP/química , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Acridinas/química , Acridinas/metabolismo , Trifosfato de Adenosina/química , Motivos de Aminoácidos , Substituição de Aminoácidos , Animais , Sítios de Ligação , Biocatálise/efeitos dos fármacos , Dibenzocicloeptenos/química , Dibenzocicloeptenos/metabolismo , Células HeLa , Humanos , Ligação de Hidrogênio , Hidrólise/efeitos dos fármacos , Lepidópteros , Ligantes , Moduladores de Transporte de Membrana/química , Moduladores de Transporte de Membrana/metabolismo , Conformação Molecular , Simulação de Acoplamento Molecular , Proteínas Mutantes/antagonistas & inibidores , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Quinolinas/química , Quinolinas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Tetra-Hidroisoquinolinas/química , Tetra-Hidroisoquinolinas/metabolismo
12.
FEBS J ; 282(6): 1031-42, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25601024

RESUMO

During the last decades antimicrobial resistance has become a global health problem. Metallo-ß-lactamases (MBLs) which are broad-spectrum ß-lactamases that inactivate virtually all ß-lactams including carbapenems, are contributing to this health problem. In this study a novel MBL variant, termed VIM-26, identified in a Klebsiella pneumoniae isolate was studied. VIM-26 belongs to the Verona integron-encoded metallo-ß-lactamase (VIM) family of MBLs and is a His224Leu variant of the well-characterized VIM-1 variant. In this study, we report the kinetic parameters, minimum inhibitory concentrations and crystal structures of a recombinant VIM-26 protein, and compare them to previously published data on VIM-1, VIM-2 and VIM-7. The kinetic parameters and minimum inhibitory concentration determinations show that VIM-26, like VIM-7, has higher penicillinase activity but lower cephalosporinase activity than VIM-1 and VIM-2. The four determined VIM-26 crystal structures revealed mono- and di-zinc forms, where the Zn1 ion has distorted tetrahedral coordination geometry with an additional water molecule (W2) at a distance of 2.6-3.7 Å, which could be important during catalysis. The R2 drug binding site in VIM-26 is more open compared to VIM-2 and VIM-7 and neutrally charged due to Leu224 and Ser228. Thus, the VIM-26 drug binding properties are different from the VIM-2 (Tyr224/Arg228) and VIM-7 (His224/Arg228) structures, indicating a role of these residues in the substrate specificity.


Assuntos
Proteínas de Bactérias/química , Leucina/química , beta-Lactamases/química , Antibacterianos/química , Sítios de Ligação , Carbapenêmicos/química , Catálise , Cefalosporinas/química , Cristalografia por Raios X , Farmacorresistência Bacteriana , Íons , Klebsiella pneumoniae/enzimologia , Penicilinas/química , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Serina/química , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa