Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell Physiol ; 65(6): 999-1013, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38668634

RESUMO

The cuticle covering aerial organs of land plants is well known to protect against desiccation. Cuticles also play diverse and specialized functions, including organ separation, depending on plant and tissue. Barley shows a distinctive cuticular wax bloom enriched in ß-diketones on leaf sheaths, stem nodes and internodes and inflorescences. Barley also develops a sticky surface on the outer pericarp layer of its grain fruit leading to strongly adhered hulls, 'covered grain', important for embryo protection and seed dispersal. While the transcription factor-encoding gene HvNUDUM (HvNUD) appears essential for adherent hulls, little is understood about how the pericarp cuticle changes during adhesion or whether changes in pericarp cuticles contribute to another phenotype where hulls partially shed, called 'skinning'. To that end, we screened barley lines for hull adhesion defects, focussing on the Eceriferum (= waxless, cer) mutants. Here, we show that the cer-xd allele causes defective wax blooms and compromised hull adhesion, and results from a mutation removing the last 10 amino acids of the GDS(L) [Gly, Asp, Ser, (Leu)]-motif esterase/lipase HvGDSL1. We used severe and moderate HvGDSL1 alleles to show that complete HvGDSL1 function is essential for leaf blade cuticular integrity, wax bloom deposition over inflorescences and leaf sheaths and pericarp cuticular ridge formation. Expression data suggest that HvGDSL1 may regulate hull adhesion independently of HvNUD. We found high conservation of HvGDSL1 among barley germplasm, so variation in HvGDSL1 unlikely leads to grain skinning in cultivated barley. Taken together, we reveal a single locus which controls adaptive cuticular properties across different organs in barley.


Assuntos
Esterases , Regulação da Expressão Gênica de Plantas , Hordeum , Lipídeos de Membrana , Proteínas de Plantas , Ceras , Hordeum/genética , Hordeum/enzimologia , Hordeum/metabolismo , Ceras/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Lipídeos de Membrana/metabolismo , Esterases/metabolismo , Esterases/genética , Mutação , Epiderme Vegetal/metabolismo , Epiderme Vegetal/genética , Motivos de Aminoácidos , Folhas de Planta/genética , Folhas de Planta/metabolismo , Fenótipo
2.
BMC Plant Biol ; 24(1): 468, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811873

RESUMO

BACKGROUND: The cuticular wax serves as a primary barrier that protects plants from environmental stresses. The Eceriferum (CER) gene family is associated with wax production and stress resistance. RESULTS: In a genome-wide identification study, a total of 52 members of the CER family were discovered in four Gossypium species: G. arboreum, G. barbadense, G. raimondii, and G. hirsutum. There were variations in the physicochemical characteristics of the Gossypium CER (GCER) proteins. Evolutionary analysis classified the identified GCERs into five groups, with purifying selection emerging as the primary evolutionary force. Gene structure analysis revealed that the number of conserved motifs ranged from 1 to 15, and the number of exons varied from 3 to 13. Closely related GCERs exhibited similar conserved motifs and gene structures. Analyses of chromosomal positions, selection pressure, and collinearity revealed numerous fragment duplications in the GCER genes. Additionally, nine putative ghr-miRNAs targeting seven G. hirsutum CER (GhCER) genes were identified. Among them, three miRNAs, including ghr-miR394, ghr-miR414d, and ghr-miR414f, targeted GhCER09A, representing the most targeted gene. The prediction of transcription factors (TFs) and the visualization of the regulatory TF network revealed interactions with GhCER genes involving ERF, MYB, Dof, bHLH, and bZIP. Analysis of cis-regulatory elements suggests potential associations between the CER gene family of cotton and responses to abiotic stress, light, and other biological processes. Enrichment analysis demonstrated a robust correlation between GhCER genes and pathways associated with cutin biosynthesis, fatty acid biosynthesis, wax production, and stress response. Localization analysis showed that most GCER proteins are localized in the plasma membrane. Transcriptome and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) expression assessments demonstrated that several GhCER genes, including GhCER15D, GhCER04A, GhCER06A, and GhCER12D, exhibited elevated expression levels in response to water deficiency stress compared to control conditions. The functional identification through virus-induced gene silencing (VIGS) highlighted the pivotal role of the GhCER04A gene in enhancing drought resistance by promoting increased tissue water retention. CONCLUSIONS: This investigation not only provides valuable evidence but also offers novel insights that contribute to a deeper understanding of the roles of GhCER genes in cotton, their role in adaptation to drought and other abiotic stress and their potential applications for cotton improvement.


Assuntos
Secas , Gossypium , Família Multigênica , Proteínas de Plantas , Gossypium/genética , Gossypium/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética , Genes de Plantas , Filogenia , Adaptação Fisiológica/genética , Ceras/metabolismo , MicroRNAs/genética
3.
New Phytol ; 239(5): 1903-1918, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37349864

RESUMO

The cuticle is a protective layer covering aerial plant organs. We studied the function of waxes for the establishment of the cuticular barrier in barley (Hordeum vulgare). The barley eceriferum mutants cer-za.227 and cer-ye.267 display reduced wax loads, but the genes affected, and the consequences of the wax changes for the barrier function remained unknown. Cuticular waxes and permeabilities were measured in cer-za.227 and cer-ye.267. The mutant loci were isolated by bulked segregant RNA sequencing. New cer-za alleles were generated by genome editing. The CER-ZA protein was characterized after expression in yeast and Arabidopsis cer4-3. Cer-za.227 carries a mutation in HORVU5Hr1G089230 encoding acyl-CoA reductase (FAR1). The cer-ye.267 mutation is located to HORVU4Hr1G063420 encoding ß-ketoacyl-CoA synthase (KAS1) and is allelic to cer-zh.54. The amounts of intracuticular waxes were strongly decreased in cer-ye.267. The cuticular water loss and permeability of cer-za.227 were similar to wild-type (WT), but were increased in cer-ye.267. Removal of epicuticular waxes revealed that intracuticular, but not epicuticular waxes are required to regulate cuticular transpiration. The differential decrease in intracuticular waxes between cer-za.227 and cer-ye.267, and the removal of epicuticular waxes indicate that the cuticular barrier function mostly depends on the presence of intracuticular waxes.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Hordeum , Proteínas de Saccharomyces cerevisiae , Hordeum/genética , Hordeum/metabolismo , Folhas de Planta/metabolismo , Água/metabolismo , Saccharomyces cerevisiae/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Ceras/metabolismo , Mutação/genética , Epiderme Vegetal/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Inibidoras de Quinase Dependente de Ciclina/genética , Proteínas Inibidoras de Quinase Dependente de Ciclina/metabolismo
4.
Plant Cell Environ ; 43(3): 662-674, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31759335

RESUMO

Arabidopsis eceriferum (cer) mutants with unique alterations in their rosette leaf cuticular wax accumulation and composition established by gas chromatography have been investigated using attenuated total reflection (ATR)-Fourier transform infrared (FTIR) spectroscopy in combination with univariate and multivariate analysis. Objectives of this study were to evaluate the utility of ATR-FTIR for detection of chemical diversity in leaf cuticles, obtain spectral profiles of cer mutants in comparison with the wild type, and identify changes in leaf cuticles caused by drought stress. FTIR spectra revealed both genotype- and treatment-dependent differences in the chemical make-up of Arabidopsis leaf cuticles. Drought stress caused specific changes in the integrated area of the CH3 peak, asymmetrical and symmetrical CH2 peaks, ester carbonyl peak and the peak area ratio of ester CO to CH2 asymmetrical vibration. CH3 peak positively correlated with the total wax accumulation. Thus, ATR-FTIR spectroscopy is a valuable tool that can advance our understanding of the role of cuticle chemistry in plant response to drought and allow selection of superior drought-tolerant varieties from large genetic resources.


Assuntos
Arabidopsis/genética , Folhas de Planta/genética , Ceras/metabolismo , Arabidopsis/fisiologia , Cromatografia Gasosa , Secas , Genótipo , Umidade , Mutação/genética , Filogenia , Análise de Componente Principal , Solo/química , Espectroscopia de Infravermelho com Transformada de Fourier , Estresse Fisiológico
5.
Ann Bot ; 126(2): 301-313, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32361758

RESUMO

BACKGROUND AND AIMS: In addition to preventing water loss, plant cuticles must also regulate nutrient loss via leaching. The eceriferum mutants in Hordeum vulgare (barley) potentially influence these functions by altering epicuticular wax structure and composition. METHODS: Cultivar 'Bonus' and five of its cer mutants were grown under optimal conditions for vegetative growth and maturation, and nine traits were measured. Nutrient and water amounts going through the soil and the amount of simulated rain as deionized water, affecting phyllosphere humidity, delivered during either the vegetative or maturation phase, were varied. Cer leaf genes and three wilty (wlt) mutations were characterized for reaction to toluidine blue and the rate of non-stomatal water loss. KEY RESULTS: Vegetative phase rain on 'Bonus' significantly decreased kernel weight and numbers by 15-30 %, while in cer.j59 and .c36 decreases of up to 42 % occurred. Maturation phase findings corroborated those from the vegetative phase. Significant pleiotropic effects were identified: cer.j59 decreased culm and spike length and 1000-kernel weight, .c36 decreased kernel number and weight, .i16 decreased spike length and .e8 increased culm height. Excepting Cer.zv and .ym mutations, none of the other 27 Cer leaf genes or wlt mutations played significant roles, if any, in preventing water loss. Cer.zv and .ym mutants lost non-stomatal water 13.5 times faster than those of Cer.j, .yi, .ys and .zp and 18.3 times faster than those of four cultivars and the mutants tested here. CONCLUSIONS: Using yield to measure the net effect of phyllosphere humidity and wax crystal structure revealed that the former is far more important than the latter. The amenable experimental setup described here can be used to delve deeper. Significant pleiotropic effects were identified for mutations in four Cer genes, of which one is known to participate in wax biosynthesis. Twenty-seven Cer leaf genes and three wlt mutations have little if any effect on water loss.


Assuntos
Hordeum/genética , Ceras , Umidade , Fenótipo , Folhas de Planta/genética
6.
Breed Sci ; 65(4): 327-32, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26366115

RESUMO

The cuticle covers the aerial parts of land plants, where it serves many important functions, including water retention. Here, a recessive cuticle mutant, eceriferum-ym (cer-ym), of Hordeum vulgare L. (barley) showed abnormally glossy spikes, sheaths, and leaves. The cer-ym mutant plant detached from its root system was hypersensitive to desiccation treatment compared with wild type plants, and detached leaves of mutant lost 41.8% of their initial weight after 1 h of dehydration under laboratory conditions, while that of the wild type plants lost only 7.1%. Stomata function was not affected by the mutation, but the mutant leaves showed increased cuticular permeability to water, suggesting a defective leaf cuticle, which was confirmed by toluidine blue staining. The mutant leaves showed a substantial reduction in the amounts of the major cutin monomers and a slight increase in the main wax component, suggesting that the enhanced cuticle permeability was a consequence of cutin deficiency. cer-ym was mapped within a 0.8 cM interval between EST marker AK370363 and AK251484, a pericentromeric region on chromosome 4H. The results indicate that the desiccation sensitivity of cer-ym is caused by a defect in leaf cutin, and that cer-ym is located in a chromosome 4H pericentromeric region.

7.
Saudi J Biol Sci ; 28(12): 6884-6896, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34866989

RESUMO

Sunflower occupies the fourth position among oilseed crops the around the world. Eceriferum (CER) is an important gene family that plays critical role in very-long-chain fatty acids elongation and biosynthesis of epicuticular waxes under both biotic and abiotic stress conditions. The aim of present study was to investigate the effect of sunflower CER genes during drought stress condition. Thus, comparative analysis was undertaken for sunflower CER genes with Arabidopsis genome to determine phylogenetic relationship, chromosomal mapping, gene structures, gene ontology and conserved motifs. Furthermore, we subjected the sunflower cultivars under drought stress and used qRT-PCR analysis to explore the expression pattern of CER genes during drought conditions. We identified thirty-seven unevenly distributed CER genes in the sunflower genome. The phylogenetic analysis revealed that CER genes were grouped into seven clades in Arabidopsis, Helianthus annuus, and Gossypium hirsutum. Expression analysis showed that genes CER10 and CER60 were upregulated in sunflower during drought conditions, indicating that these genes are activated during drought stress. The results obtained will serve to characterize the CER gene family in sunflower and exploit the role of these genes in wax biosynthesis under limited water conditions. KEY MESSAGE: Cuticular waxes protect the plants from drought stress, so we observed the expression of wax bio synthesis genes in recently sequences genome of Helianthus annuus. We observed that expression of wax biosynthesis genes CER10 and CER60 was upregulated when the plants were subjected to drought stress.

8.
Plants (Basel) ; 6(2)2017 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-28608803

RESUMO

The elongation of very-long-chain fatty acids is a conserved process used for the production of many metabolites, including plant cuticular waxes. The elongation of precursors of the most abundant cuticular wax components of some plants, however, is unique in requiring ECERIFERUM2-LIKE (CER2-LIKE) proteins. CER2-LIKEs are a clade within the BAHD superfamily of acyltransferases. They are known to be required for cuticular wax production in both Arabidopsis and maize based on mutant studies. Heterologous expression of Arabidopsis and rice CER2-LIKEs in Saccharomyces cerevisiae has demonstrated that they modify the chain-length specificity of elongation when paired with particular condensing enzymes. Despite sequence homology, CER2-LIKEs are distinct from the BAHD superfamily in that they do not appear to use acyl transfer activity to fulfill their biological function. Here, we review the discovery and characterization of CER2-LIKEs, propose several models to explain their function, and explore the importance of CER2-LIKE proteins for the evolution of plant cuticles.

9.
Plant Signal Behav ; 10(4): 1-3, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25876181

RESUMO

Aerial parts of plants are separated from the environment by a cuticle which functions in protection against desiccation and pathogen attack. Recently, we reported on a barley mutant with defect in the 3-KETOACYL-CoA-SYNTHASE (HvKCS6) gene, resulting in reduced coverage of the cuticle with epicuticular waxes. Spores of adapted and non-adapted powdery mildew fungi germinated less frequently on mutant leaves possibly because plant derived signals are missing. We used a shoot and root phenotyping facility to test whether depletion in epicuticular waxes negatively impacts plant performance under water-limiting conditions. While shoots of mutant plants grew slower at well-watered conditions than wild-type plants, they showed an equal or slightly better growth rate at water limitation. Also for roots, differences between mutant and parental line were less prominent at water-limiting as compared to well-watered conditions. Our results challenge the intuitive belief that reduced epicuticular wax might become a drawback at water limitation.


Assuntos
3-Oxoacil-(Proteína de Transporte de Acila) Sintase/metabolismo , Hordeum/enzimologia , Mutação/genética , Raízes de Plantas/fisiologia , Brotos de Planta/fisiologia , Água/metabolismo , Ceras/metabolismo , Hordeum/fisiologia
10.
Plant Sci ; 210: 93-107, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23849117

RESUMO

Very-long-chain fatty acids (VLCFAs) are essential molecules produced by all plant cells, and are components or precursors of numerous specialized metabolites synthesized in specific cell types. VLCFAs are elongated by an endoplasmic reticulum-localized fatty acid elongation complex of four core enzymes, which sequentially add two carbon units to a growing acyl chain. Identification and characterization of these enzymes in Arabidopsis thaliana has revealed that three of the four enzymes act as generalists, contributing to all metabolic pathways that require VLCFAs. A fourth component, the condensing enzyme, provides substrate specificity and determines the amount of product synthesized by the entire complex. Land plants have two families of condensing enzymes, FATTY ACID ELONGATION 1 (FAE1)-type ketoacyl-CoA synthases (KCSs) and ELONGATION DEFECTIVE-LIKEs (ELO-LIKEs). Our current knowledge of the specific roles of different condensing enzymes is incomplete, as is our understanding of the biological function of a recently characterized family of proteins, CER2-LIKEs, which contribute to condensing enzyme function. More broadly, the stoichiometry and quaternary structure of the fatty acid elongase complex remains poorly understood, and specific phylogenetic and biochemical questions persist for each component of the complex. Investigation of VLCFA elongation in different organisms, structural biochemistry, and cell biology approaches stand to greatly benefit this field of plant biology.


Assuntos
Arabidopsis/enzimologia , Embriófitas/enzimologia , Ácidos Graxos/metabolismo , Proteínas de Plantas/metabolismo , Acetiltransferases/química , Acetiltransferases/genética , Acetiltransferases/metabolismo , Arabidopsis/genética , Embriófitas/genética , Retículo Endoplasmático/metabolismo , Elongases de Ácidos Graxos , Modelos Moleculares , Complexos Multienzimáticos , Proteínas de Plantas/química , Proteínas de Plantas/genética , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa