RESUMO
Growing crops in more diverse crop systems (i.e., intercropping) is one way to produce food more sustainably. Even though intercropping, compared to average monocultures, is generally more productive, the full yield potential of intercropping might not yet have been achieved as modern crop cultivars are bred to be grown in monoculture. Breeding plants for more familiarity in mixtures, i.e., plants that are adapted to more diverse communities (i.e., adaptation) or even to coexist with each other (i.e., coadaptation) might have the potential to sustainably enhance productivity. In this study, the productivity benefits of familiarity through evolutionary adaptation and coevolutionary coadaptation were disentangled in a crop system through an extensive common garden experiment. Furthermore, evolutionary and coevolutionary effects on species-level and community-level productivity were linked to corresponding changes in functional traits. We found evidence for higher productivity and trait convergence with increasing familiarity with the plant communities. Furthermore, our results provide evidence for the coevolution of plants in mixtures leading to higher productivity of coadapted species. However, with the functional traits measured in our study, we could not fully explain the productivity benefits found upon coevolution. Our study investigated coevolution among randomly interacting plants and was able to demonstrate that coadaptation through coevolution of coexisting species in mixtures occurs and promotes ecosystem functioning (i.e., higher productivity). This result is particularly relevant for the diversification of agricultural and forest ecosystems, demonstrating the added value of artificially selecting plants for the communities they are familiar with.
Assuntos
Ecossistema , Melhoramento Vegetal , Agricultura/métodos , Produtos Agrícolas , Evolução BiológicaRESUMO
Multiple facets of global change affect the earth system interactively, with complex consequences for ecosystem functioning and stability. Simultaneous climate and biodiversity change are of particular concern, because biodiversity may contribute to ecosystem resistance and resilience and may mitigate climate change impacts. Yet, the extent and generality of how climate and biodiversity change interact remain insufficiently understood, especially for the decomposition of organic matter, a major determinant of the biosphere-atmosphere carbon feedbacks. With an inter-biome field experiment using large rainfall exclusion facilities, we tested how drought, a common prediction of climate change models for many parts of the world, and biodiversity in the decomposer system drive decomposition in forest ecosystems interactively. Decomposing leaf litter lost less carbon (C) and especially nitrogen (N) in five different forest biomes following partial rainfall exclusion compared to conditions without rainfall exclusion. An increasing complexity of the decomposer community alleviated drought effects, with full compensation when large-bodied invertebrates were present. Leaf litter mixing increased diversity effects, with increasing litter species richness, which contributed to counteracting drought effects on C and N loss, although to a much smaller degree than decomposer community complexity. Our results show at a relevant spatial scale covering distinct climate zones that both, the diversity of decomposer communities and plant litter in forest floors have a strong potential to mitigate drought effects on C and N dynamics during decomposition. Preserving biodiversity at multiple trophic levels contributes to ecosystem resistance and appears critical to maintain ecosystem processes under ongoing climate change.
Assuntos
Secas , Ecossistema , Biodiversidade , Florestas , Folhas de Planta , CarbonoRESUMO
Examining the relationship between tree diversity and ecosystem functioning has been a recent focus of forest ecology. Particular emphasis has been given to the impact of tree diversity on productivity and to its potential to mitigate negative global change effects; however, little attention has been paid to tree mortality. This is critical because both tree mortality and productivity underpin forest ecosystem dynamics and therefore forest carbon sequestration. Neglecting tree mortality leaves a large part of the picture undocumented. Here we show that increasingly diverse forest stands have increasingly high mortality probabilities. We found that the most species-rich stands in temperate biomes had mortality probabilities more than sevenfold higher than monospecific stands (â¼0.6% year−1 in monospecific stands to 4.0% year−1 in the most species-rich stands) while in boreal stands increases were less pronounced but still significant (â¼1.1% year−1 in monospecific stands to 1.8% year−1 in the most species-rich stands). Tree species richness was the third-most-important predictor of mortality in our models in temperate forests and the fifth-most-important predictor in boreal forests. Our results highlight that while the promotion of tree diversity undoubtedly has many positive effects on ecosystem functioning and the services that trees provide to humanity, it remains important to consider all aspects of forest dynamics in order to properly predict the implications of maintaining and promoting tree diversity.
Assuntos
Biodiversidade , Ecossistema , Canadá , Florestas , Estados UnidosRESUMO
Understanding the mechanisms underlying diversity-productivity relationships (DPRs) is crucial to mitigating the effects of forest biodiversity loss. Tree-tree interactions in diverse communities are fundamental in driving growth rates, potentially shaping the emergent DPRs, yet remain poorly explored. Here, using data from a large-scale forest biodiversity experiment in subtropical China, we demonstrated that changes in individual tree productivity were driven by species-specific pairwise interactions, with higher positive net pairwise interaction effects on trees in more diverse neighbourhoods. By perturbing the interactions strength from empirical data in simulations, we revealed that the positive differences between inter- and intra-specific interactions were the critical determinant for the emergence of positive DPRs. Surprisingly, the condition for positive DPRs corresponded to the condition for coexistence. Our results thus provide a novel insight into how pairwise tree interactions regulate DPRs, with implications for identifying the tree mixtures with maximized productivity to guide forest restoration and reforestation efforts.
Assuntos
Florestas , Árvores , Árvores/fisiologia , Biodiversidade , China , EcossistemaRESUMO
The relationship between biodiversity and ecosystem function (BEF) captivates ecologists, but the factors responsible for the direction of this relationship remain unclear. While higher ecosystem functioning at higher biodiversity levels ('positive BEF') is not universal in nature, negative BEF relationships seem puzzlingly rare. Here, we develop a dynamical consumer-resource model inspired by microbial decomposer communities in pitcher plant leaves to investigate BEF. We manipulate microbial diversity via controlled colonization and measure their function as total ammonia production. We test how niche partitioning among bacteria and other ecological processes influence BEF in the leaves. We find that a negative BEF can emerge from reciprocal interspecific inhibition in ammonia production causing a negative complementarity effect, or from competitive hierarchies causing a negative selection effect. Absent these factors, a positive BEF was the typical outcome. Our findings provide a potential explanation for the rarity of negative BEF in empirical data.
Assuntos
Amônia , Ecossistema , Biodiversidade , BactériasRESUMO
It is widely acknowledged that biodiversity change is affecting human well-being by altering the supply of Nature's Contributions to People (NCP). Nevertheless, the role of individual species in this relationship remains obscure. In this article, we present a framework that combines the cascade model from ecosystem services research with network theory from community ecology. This allows us to quantitatively link NCP demanded by people to the networks of interacting species that underpin them. We show that this "network cascade" framework can reveal the number, identity and importance of the individual species that drive NCP and of the environmental conditions that support them. This information is highly valuable in demonstrating the importance of biodiversity in supporting human well-being and can help inform the management of biodiversity in social-ecological systems.
Assuntos
Biodiversidade , Ecossistema , Humanos , EcologiaRESUMO
Terrestrial wetland ecosystems challenge biodiversity-ecosystem function theory, which generally links high species diversity to stable ecosystem functions. An open question in ecosystem ecology is whether assemblages of co-occurring peat mosses contribute to the stability of peatland ecosystem processes. We conducted a two-species (Sphagnum cuspidatum, Sphagnum medium) replacement series mesocosm experiment to evaluate the resistance, resilience, and recovery rates of net ecosystem CO2 exchange (NEE) under mild and deep water table drawdown. Our results show a positive effect of mild water table drawdown on NEE with no apparent role for peat moss mixture. Our study indicates that the carbon uptake capacity by peat moss mixtures is rather resilient to mild water table drawdown, but seriously affected by deeper drought conditions. Co-occurring peat moss species seem to enhance the resilience of the carbon uptake function (i.e. ability of NEE to return to pre-perturbation levels) of peat moss mixtures only slightly. These findings suggest that assemblages of co-occurring Sphagnum mosses do only marginally contribute to the stability of ecosystem functions in peatlands under drought conditions. Above all, our results highlight that predicted severe droughts can gravely affect the sink capacity of peatlands, with only a small extenuating role for peat moss mixtures.
Assuntos
Ecossistema , Sphagnopsida , Ecologia , Biodiversidade , CarbonoRESUMO
Recent droughts have strongly impacted forest ecosystems and are projected to increase in frequency, intensity, and duration in the future together with continued warming. While evidence suggests that tree diversity can regulate drought impacts in natural forests, few studies examine whether mixed tree plantations are more resistant to the impacts of severe droughts. Using natural variations in leaf carbon (C) and nitrogen (N) isotopic ratios, that is δ13C and δ15N, as proxies for drought response, we analyzed the effects of tree species richness on the functional responses of tree plantations to the pan-European 2018 summer drought in seven European tree diversity experiments. We found that leaf δ13C decreased with increasing tree species richness, indicating less drought stress. This effect was not related to drought intensity, nor desiccation tolerance of the tree species. Leaf δ15N increased with drought intensity, indicating a shift toward more open N cycling as water availability diminishes. Additionally, drought intensity was observed to alter the influence of tree species richness on leaf δ15N from weakly negative under low drought intensity to weakly positive under high drought intensity. Overall, our findings suggest that dual leaf isotope analysis helps understand the interaction between drought, nutrients, and species richness.
Assuntos
Biodiversidade , Isótopos de Carbono , Secas , Isótopos de Nitrogênio , Folhas de Planta , Estações do Ano , Árvores , Folhas de Planta/fisiologia , Árvores/fisiologia , Isótopos de Carbono/análise , Europa (Continente) , Especificidade da EspécieRESUMO
Multispecies planting is an important approach to deliver ecosystem functions in afforestation projects. However, the importance of species richness vs specific species composition in this context remains unresolved. To estimate species or functional group richness and compositional change between two communities, we calculated nestedness, where one community contains a subset of the species of another, and turnover, where two communities differ in species composition but not in species richness. We evaluated the effects of species/functional group nestedness and turnover on stand productivity using 315 mixed plots from a pool of 40 tree species in a large forest biodiversity experiment in subtropical China. We found that the greater the differences in species or functional group nestedness and turnover, the greater the differences in stand productivity between plots. Additionally, the strong effects of both nestedness and turnover on stand productivity developed over the 11-yr observation period. Our results indicate that selection of specific tree species is as important as planting a large number of species to support the productivity function of forests. Furthermore, the selection of specific tree species should be based on functionality, because beneficial effects of functional group composition were stronger than those of species composition.
RESUMO
Decades of studies have demonstrated links between biodiversity and ecosystem functioning, yet the generality of the relationships and the underlying mechanisms remain unclear, especially for forest ecosystems. Using 11 tree-diversity experiments, we tested tree species richness-community productivity relationships and the role of arbuscular (AM) or ectomycorrhizal (ECM) fungal-associated tree species in these relationships. Tree species richness had a positive effect on community productivity across experiments, modified by the diversity of tree mycorrhizal associations. In communities with both AM and ECM trees, species richness showed positive effects on community productivity, which could have resulted from complementarity between AM and ECM trees. Moreover, both AM and ECM trees were more productive in mixed communities with both AM and ECM trees than in communities assembled by their own mycorrhizal type of trees. In communities containing only ECM trees, species richness had a significant positive effect on productivity, whereas species richness did not show any significant effects on productivity in communities containing only AM trees. Our study provides novel explanations for variations in diversity-productivity relationships by suggesting that tree-mycorrhiza interactions can shape productivity in mixed-species forest ecosystems.
Assuntos
Biodiversidade , Micorrizas , Árvores , Micorrizas/fisiologia , Árvores/microbiologia , Especificidade da EspécieRESUMO
Marine sediments cover 70% of the Earth's surface, and harbour diverse bacterial communities critical for marine biogeochemical processes, which affect climate change, biodiversity and ecosystem functioning. Nematodes, the most abundant and species-rich metazoan organisms in marine sediments, in turn, affect benthic bacterial communities and bacterial-mediated ecological processes, but the underlying mechanisms by which they affect biogeochemical cycles remain poorly understood. Here, we demonstrate using a metatranscriptomic approach that nematodes alter the taxonomic and functional profiles of benthic bacterial communities. We found particularly strong stimulation of nitrogen-fixing and methane-oxidizing bacteria in the presence of nematodes, as well as increased functional activity associated with methane metabolism and degradation of various carbon compounds. This study provides empirical evidence that the presence of nematodes results in taxonomic and functional shifts in active bacterial communities, indicating that nematodes may play an important role in benthic ecosystem processes.
Assuntos
Bactérias , Ecossistema , Sedimentos Geológicos , Nematoides , Animais , Nematoides/microbiologia , Nematoides/genética , Bactérias/genética , Bactérias/classificação , Sedimentos Geológicos/microbiologia , Biodiversidade , Transcriptoma , Microbiota/genética , Metano/metabolismoRESUMO
Biodiversity is considered important to the mitigation of global change impacts on ecosystem multifunctionality in terrestrial ecosystems. However, potential mechanisms through which biodiversity maintains ecosystem multifunctionality under global change remain unclear. We grew 132 plant communities with two levels of plant diversity, crossed with treatments based on 10 global change factors (nitrogen deposition, soil salinity, drought, plant invasion, simulated grazing, oil pollution, plastics pollution, antibiotics pollution, heavy metal pollution, and pesticide pollution). All global change factors negatively impacted ecosystem multifunctionality, but negative impacts were stronger in high compared with low diversity plant communities. We explored potential mechanisms for this unexpected result, finding that the inhibition of selection effects (i.e., selection for plant species associated with high ecosystem functioning) contributed to sensitivity of ecosystem multifunctionality to global change. Specifically, global change factors decreased the abundance of novel functional plants (i.e., legumes) in high but not low diversity plant communities. The negative impacts of global change on ecosystem multifunctionality were also mediated by increased relative abundance of fungal plant pathogens (identified from metabarcoding of soil samples) and their negative relationship with the abundance of novel functional plants. Taken together, our experiment highlights the importance of protecting high diversity plant communities and legumes, and managing fungal pathogens, to the maintenance of ecosystem multifunctionality in the face of complex global change.
Assuntos
Ecossistema , Fabaceae , Biodiversidade , Plantas , Solo , Poluição AmbientalRESUMO
Changes in climate and biodiversity are widely recognized as primary global change drivers of ecosystem structure and functioning, also affecting ecosystem services provided to human populations. Increasing plant diversity not only enhances ecosystem functioning and stability but also mitigates climate change effects and buffers extreme weather conditions, yet the underlying mechanisms remain largely unclear. Recent studies have shown that plant diversity can mitigate climate change (e.g. reduce temperature fluctuations or drought through microclimatic effects) in different compartments of the focal ecosystem, which as such may contribute to the effect of plant diversity on ecosystem properties and functioning. However, these potential plant diversity-induced microclimate effects are not sufficiently understood. Here, we explored the consequences of climate modulation through microclimate modification by plant diversity for ecosystem functioning as a potential mechanism contributing to the widely documented biodiversity-ecosystem functioning (BEF) relationships, using a combination of theoretical and simulation approaches. We focused on a diverse set of response variables at various levels of integration ranging from ecosystem-level carbon exchange to soil enzyme activity, including population dynamics and the activity of specific organisms. Here, we demonstrated that a vegetation layer composed of many plant species has the potential to influence ecosystem functioning and stability through the modification of microclimatic conditions, thus mitigating the negative impacts of climate extremes on ecosystem functioning. Integrating microclimatic processes (e.g. temperature, humidity and light modulation) as a mechanism contributing to the BEF relationships is a promising avenue to improve our understanding of the effects of climate change on ecosystem functioning and to better predict future ecosystem structure, functioning and services. In addition, microclimate management and monitoring should be seen as a potential tool by practitioners to adapt ecosystems to climate change.
Assuntos
Ecossistema , Microclima , Humanos , Biodiversidade , Plantas , Solo , Mudança ClimáticaRESUMO
The accelerating pace of climate change has led to unprecedented shifts in surface temperature and precipitation patterns worldwide, with African savannas being among the most vulnerable regions. Understanding the impacts of these extreme changes on ecosystem health, functioning and stability is crucial. This paper focuses on the detection of breakpoints, indicative of shifts in ecosystem functioning, while also determining relevant ecosystem characteristics and climatic drivers that increase susceptibility to these shifts within the semi-arid to arid savanna biome. Utilising a remote sensing change detection approach and rain use efficiency (RaUE) as a proxy for ecosystem functioning, spatial and temporal patterns of breakpoints in the savanna biome were identified. We then employed a novel combination of survival analysis and remote sensing time series analysis to compare ecosystem characteristics and climatic drivers in areas experiencing breakpoints versus areas with stable ecosystem functioning. Key ecosystem factors increasing savanna breakpoint susceptibility were identified, namely higher soil sand content, flatter terrain and a cooler long-term mean temperature during the wet summer season. Moreover, the primary driver of changes in ecosystem functioning in arid savannas, as opposed to wetter tropical savannas, was found to be the increased frequency and severity of rainfall events, rather than drought pressures. This research highlights the importance of incorporating wetness severity metrics alongside drought metrics to comprehensively understand climate-ecosystem interactions leading to abrupt shifts in ecosystem functioning in arid biomes. The findings also emphasise the need to consider the underlying ecosystem characteristics, including soil, topography and vegetation composition, in assessing ecosystem responses to climate change. While this research primarily concentrated on the southern African savanna as a case study, the methodological robustness of this approach enables its application to diverse arid and semi-arid biomes for the assessment of climate-ecosystem interactions that contribute to abrupt shifts.
Assuntos
Ecossistema , Pradaria , Chuva , Estações do Ano , SoloRESUMO
It is well known that biodiversity positively affects ecosystem functioning, leading to enhanced ecosystem stability. However, this knowledge is mainly based on analyses using single ecosystem functions, while studies focusing on the stability of ecosystem multifunctionality (EMF) are rare. Taking advantage of a long-term grassland biodiversity experiment, we studied the effect of plant diversity (1-60 species) on EMF over 5 years, its temporal stability, as well as multifunctional resistance and resilience to a 2-year drought event. Using split-plot treatments, we further tested whether a shared history of plants and soil influences the studied relationships. We calculated EMF based on functions related to plants and higher-trophic levels. Plant diversity enhanced EMF in all studied years, and this effect strengthened over the study period. Moreover, plant diversity increased the temporal stability of EMF and fostered resistance to reoccurring drought events. Old plant communities with shared plant and soil history showed a stronger plant diversity-multifunctionality relationship and higher temporal stability of EMF than younger communities without shared histories. Our results highlight the importance of old and biodiverse plant communities for EMF and its stability to extreme climate events in a world increasingly threatened by global change.
Assuntos
Ecossistema , Pradaria , Biodiversidade , Plantas , SoloRESUMO
This article is an Invited Commentary on Stephenson et al. (2024). This commentary attempts to provide broader context of the research within the body of literature on species loss and ecosystem functioning and highlights its relevance to conservation and global change.
Assuntos
Mudança Climática , Ecossistema , Florestas , Animais , Conservação dos Recursos Naturais , Fezes/químicaRESUMO
Ocean warming is driving significant changes in the structure and functioning of marine ecosystems, shifting species' biogeography and phenology, changing body size and biomass and altering the trophodynamics of the system. Particularly, extreme temperature events such as marine heatwaves (MHWs) have been increasing in intensity, duration and frequency. MHWs are causing large-scale impacts on marine ecosystems, such as coral bleaching, mass mortality of seagrass meadows and declines in fish stocks and other marine organisms in recent decades. In this study, we developed and applied a dynamic version of the EcoTroph trophodynamic modelling approach to study the cascading effects of individual MHW on marine ecosystem functioning. We simulated theoretical user-controlled ecosystems and explored the consequences of various assumptions of marine species mortality along the food web, associated with different MHW intensities. We show that an MHW can lead to a significant biomass reduction of all consumers, with the severity of the declines being dependent on species trophic levels (TLs) and biomes, in addition to the characteristics of MHWs. Biomass of higher TLs declines more than lower TLs under an MHW, leading to changes in ecosystem structure. While tropical ecosystems are projected to be sensitive to low-intensity MHWs, polar and temperate ecosystems are expected to be impacted by more intense MHWs. The estimated time to recover from MHW impacts is twice as long for polar ecosystems and one-third longer for temperate biomes compared with tropical biomes. This study highlights the importance of considering extreme weather events in assessing the effects of climate change on the structures and functions of marine ecosystems.
Assuntos
Biomassa , Ecossistema , Animais , Mudança Climática , Cadeia Alimentar , Organismos Aquáticos/fisiologia , Oceanos e Mares , Modelos Teóricos , Temperatura Alta/efeitos adversosRESUMO
Climate change will affect the way biodiversity influences the stability of plant communities. Although biodiversity, associated species asynchrony, and species stability could enhance community stability, the understanding of potential nonlinear shifts in the biodiversity-stability relationship across a wide range of aridity (measured as the aridity index, the precipitation/potential evapotranspiration ratio) gradients and the underlying mechanisms remain limited. Using an 8-year dataset from 687 sites in Mongolia, which included 5496 records of vegetation and productivity, we found that the temporal stability of plant communities decreased more rapidly in more arid areas than in less arid areas. The result suggests that future aridification across terrestrial ecosystems may adversely affect community stability. Additionally, we identified nonlinear shifts in the effects of species richness and species synchrony on temporal community stability along the aridity gradient. Species synchrony was a primary driver of community stability, which was consistently negatively affected by species richness while being positively affected by the synchrony between C3 and C4 species across the aridity gradient. These results highlight the crucial role of C4 species in stabilizing communities through differential responses to interannual climate variations between C3 and C4 species. Notably, species richness and the synchrony between C3 and C4 species independently regulated species synchrony, ultimately affecting community stability. We propose that maintaining plant communities with a high diversity of C3 and C4 species will be key to enhancing community stability across Mongolian grasslands. Moreover, species synchrony, species stability, species richness and the synchrony between C3 and C4 species across the aridity gradient consistently mediated the impacts of aridity on community stability. Hence, strategies aimed at promoting the maintenance of biological diversity and composition will help ecosystems adapt to climate change or mitigate its adverse effects on ecosystem stability.
Assuntos
Biodiversidade , Mudança Climática , Mongólia , Plantas , Clima Desértico , EcossistemaRESUMO
Nanoparticle pollution has been shown to affect various organisms. However, the effects of nanoparticles on species interactions, and the role of species traits, such as body size, in modulating these effects, are not well-understood. We addressed this issue using competing freshwater phytoplankton species exposed to copper oxide nanoparticles. Increasing nanoparticle concentration resulted in decreased phytoplankton species growth rates and community productivity (both abundance and biomass). Importantly, we consistently found that nanoparticles had greater negative effects on species with smaller cell sizes, such that nanoparticle pollution weakened the competitive dominance of smaller species and promoted species diversity. Moreover, nanoparticles reduced the growth rate differences and competitive ability differences of competing species, while having little effect on species niche differences. Consequently, nanoparticle pollution reduced the selection effect on phytoplankton community abundance, but increased the selection effect on community biomass. Our results suggest cell size as a key functional trait to consider when predicting phytoplankton community structure and ecosystem functioning in the face of increasing nanopollution.
Assuntos
Ecossistema , Fitoplâncton , Biodiversidade , Biomassa , Água DoceRESUMO
Streams are significant contributors of greenhouse gases (GHG) to the atmosphere, and the increasing number of stressors degrading freshwaters may exacerbate this process, posing a threat to climatic stability. However, it is unclear whether the influence of multiple stressors on GHG concentrations in streams results from increases of in-situ metabolism (i.e., local processes) or from changes in upstream and terrestrial GHG production (i.e., distal processes). Here, we hypothesize that the mechanisms controlling multiple stressor effects vary between carbon dioxide (CO2) and methane (CH4), with the latter being more influenced by changes in local stream metabolism, and the former mainly responding to distal processes. To test this hypothesis, we measured stream metabolism and the concentrations of CO2 (pCO2) and CH4 (pCH4) in 50 stream sites that encompass gradients of nutrient enrichment, oxygen depletion, thermal stress, riparian degradation and discharge. Our results indicate that these stressors had additive effects on stream metabolism and GHG concentrations, with stressor interactions explaining limited variance. Nutrient enrichment was associated with higher stream heterotrophy and pCO2, whereas pCH4 increased with oxygen depletion and water temperature. Discharge was positively linked to primary production, respiration and heterotrophy but correlated negatively with pCO2. Our models indicate that CO2-equivalent concentrations can more than double in streams that experience high nutrient enrichment and oxygen depletion, compared to those with oligotrophic and oxic conditions. Structural equation models revealed that the effects of nutrient enrichment and discharge on pCO2 were related to distal processes rather than local metabolism. In contrast, pCH4 responses to nutrient enrichment, discharge and temperature were related to both local metabolism and distal processes. Collectively, our study illustrates potential climatic feedbacks resulting from freshwater degradation and provides insight into the processes mediating stressor impacts on the production of GHG in streams.
Os rios são grandes emissores de gases com efeito de estufa (GEE) para a atmosfera, e o crescente número de agentes de stress que degradam os rios pode exacerbar este processo, e constituir uma ameaça à estabilidade climática. No entanto, não é claro se o efeito dos impactos humanos nas concentrações de GEE na água está associado ao aumento do metabolismo local do rio (processos locais) ou ao aumento da produção de GEE nas zonas a montante dos rios ou nas zonas terrestres adjacentes (processos distais). A nossa hipótese é que os mecanismos que controlam os efeitos dos impactos humanos na emissão de GEE variam entre o dióxido de carbono (CO2) e o metano (CH4). A nossa previsão é que o CO2 responde principalmente a processos distais, enquanto o CH4 é mais influenciado por alterações no metabolismo local dos cursos de água. Para avaliar esta hipótese, medimos o metabolismo aquático e as concentrações de CO2 (pCO2) e CH4 (pCH4) em 50 rios que abrangem gradientes de enriquecimento em nutrientes, depleção de oxigénio, stress térmico, degradação da zona ribeirinha e caudal. Os nossos resultados indicam que estes agentes de stress tiveram efeitos aditivos no metabolismo e nas concentrações de GEE nos rios, e que as interações entre os agentes de stress tiveram pouca capacidade preditiva. O enriquecimento em nutrientes foi associado a um aumento da heterotrofia e pCO2, enquanto o pCH4 aumentou com a depleção de oxigénio e com a temperatura da água. O caudal estava positivamente correlacionado com a produção primária, a respiração e a heterotrofia, mas negativamente correlacionado com o pCO2. Os nossos modelos indicam que as concentrações equivalentes de CO2 podem duplicar em rios eutrofizados e com baixa concentração de oxigénio, em comparação com os rios oligotróficos e com águas bem oxigenadas. A aplicação de modelos de equações estruturais mostrou que os efeitos do enriquecimento em nutrientes e do caudal no pCO2 estavam relacionados com processos distais e não com o metabolismo local. Em contrapartida, as respostas do pCH4 ao enriquecimento de nutrientes, ao caudal e à temperatura estavam relacionadas tanto com o metabolismo local como com processos distais. O nosso estudo demonstra que a degradação dos rios e dos ecossistemas ribeirinhos pode ter efeitos negativos na estabilidade climática e fornece informação relevante sobre os processos biogeoquímicos que medeiam os impactos humanos na produção de GEE nos rios.