Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biomech Model Mechanobiol ; 21(2): 553-567, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35098393

RESUMO

Stress fibers in the cytoskeleton are essential in maintaining cellular shape and influence cellular adhesion and migration. Cyclic uniaxial stretching results in cellular reorientation orthogonal to the applied stretch direction. The mechanistic cues underlying changes to cellular form and function to stretch stimuli are currently underexplored. We show stretch-induced stress fiber lengthening, their realignment, and increased cortical actin in NIH 3T3 fibroblasts stretched over varied amplitudes and durations. Higher amounts of actin and stress fiber alignment were accompanied with an increase in the effective elastic modulus of cells. Microtubules did not contribute to the measured stiffness or reorientation response but were essential to the nuclear reorientation. We used a phenomenological growth and remodeling law, based on the experimental data, to model stress fiber elongation and reorientation dynamics based on a nonlinear, orthotropic, fiber-reinforced continuum representation of the cell. The model predicts the changes observed fibroblast morphology and increased cellular stiffness under uniaxial cyclic stretch which agrees with experimental results. Such studies are important in exploring the differences underlying mechanotransduction and cellular contractility under stretch.


Assuntos
Mecanotransdução Celular , Fibras de Estresse , Actinas/metabolismo , Animais , Mecanotransdução Celular/fisiologia , Camundongos , Células NIH 3T3 , Fibras de Estresse/metabolismo , Estresse Mecânico
2.
ACS Appl Mater Interfaces ; 13(32): 37997-38006, 2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34355561

RESUMO

It is well known that extracellular matrix stiffness can affect cell fate and change dynamically during many biological processes. Existing experimental means for in situ matrix stiffness modulation often alters its structure, which could induce additional undesirable effects on cells. Inspired by the phenomenon of depth sensing by cells, we introduce here core-shell microfibers with a thin collagen core for cell growth and an alginate shell that can be dynamically stiffened to deliver mechanical stimuli. This allows for the maintenance of biochemical properties and structure of the surrounding microenvironment, while dynamically modulating the effective modulus "felt" by cells. We show that simple addition of Sr2+ in media can easily increase the stiffness of initially Ca2+ cross-linked alginate shells. Thus, despite the low stiffness of collagen cores (<5 kPa), the effective modulus of the matrix "felt" by cells are substantially higher, which promotes osteogenesis differentiation of human mesenchymal stem cells. We show this effect is more prominent in the stiffening microfiber compared to a static microfiber control. This approach provides a versatile platform to independently and dynamically modulate cellular microenvironments with desirable biochemical, physical, and mechanical stimuli without an unintended interplay of effects, facilitating investigations of a wide range of dynamic cellular processes.


Assuntos
Técnicas de Cultura de Células , Diferenciação Celular/efeitos dos fármacos , Meios de Cultura/farmacologia , Células-Tronco Mesenquimais/citologia , Osteogênese , Animais , Animais Recém-Nascidos , Bovinos , Linhagem Celular , Matriz Extracelular/metabolismo , Humanos
3.
J Mech Behav Biomed Mater ; 120: 104591, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34052729

RESUMO

This study utilized a statistical nanoindentation analysis technique (SNT) to measure the amount of organic and inorganic constituents of twenty different brands of dental resin-based composites (RBCs) and tested whether their macro-property such as flexural modulus could be approximated by the proportions of constituents' micromechanical signatures using various rules of mixtures. The probability density function (PDF) of constitutive moduli per RBC brand were measured for three groups, comprised of different indent arrays and inter-indent spacings. SNT was then applied to deconvolute each PDF, from which the effective filler (µF) and matrix (µM) moduli and filler (VF) and matrix (VM) volume fractions per RBC brand were computed. VF and VM values obtained via SNT were strongly correlated with VF and VM obtained via Thermogravimetric Analysis and Archimedes method. The "observed" flexural modulus (EcFS) measured under macro-experiment were well associated with "predicted" effective modulus (EcEff) measured under nano-experiment, thereby establishing that global modulus was strongly affected by the constituents' micromechanics. However, the "predicted" EcEff were proportionally higher than the "observed" EcFS. VF was a confounder to EcFS and EcEff, whereby the influence of VF on both modular ratios (EcFS/µM and EcEff/µM) was best modeled by an exponential regression.


Assuntos
Resinas Compostas , Materiais Dentários , Módulo de Elasticidade , Teste de Materiais , Maleabilidade , Propriedades de Superfície
4.
Plants (Basel) ; 9(6)2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32471114

RESUMO

Self-supporting plants and climbers exhibit differences in their structural and biomechanical properties. We hypothesized that such fundamental differences originate at the level of the material properties. In this study, we compared three non-woody members of the Solanales exhibiting different growth habits: (1) a self-supporting plant (potato, Solanum tuberosum), (2) a trailing plant (sweet potato, Ipomoea batatas), and (3) a twining climber (morning glory, Ipomoea tricolor). The mechanical properties investigated by materials analyses were combined with structural, biochemical, and immunohistochemical analyses. Generally, the plants exhibited large morphological differences, but possessed relatively similar anatomy and cell wall composition. The cell walls were primarily composed of hemicelluloses (~60%), with α-cellulose and pectins constituting ~25% and 5%-8%, respectively. Immunohistochemistry of specific cell wall components suggested only minor variation in the occurrence and localization between the species, although some differences in hemicellulose distribution were observed. According to tensile and flexural tests, potato stems were the stiffest by a significant amount and the morning glory stems were the most compliant and showed differences in two- and three-orders of magnitude; the differences between their effective Young's (Elastic) modulus values (geometry-independent parameter), on the other hand, were substantially lower (at the same order of magnitude) and sometimes not even significantly different. Therefore, although variability exists in the internal anatomy and cell wall composition between the different species, the largest differences were seen in the morphology, which appears to be the primary determinant of biomechanical function. Although this does not exclude the possibility of different mechanisms in other plant groups, there is apparently less constraint to modifying stem morphology than anatomy and cell wall composition within the Solanales.

5.
Materials (Basel) ; 13(15)2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32707892

RESUMO

Curved steel-concrete composite box beams are widely used in urban overpasses and ramp bridges. In contrast to straight composite beams, curved composite box beams exhibit complex mechanical behavior with bending-torsion coupling, including constrained torsion, distortion, and interfacial biaxial slip. The shear-lag effect and curvature variation in the radial direction should be taken into account when the beam is sufficiently wide. Additionally, long-term deflection has been observed in curved composite box beams due to the shrinkage and creep effects of the concrete slab. In this paper, an equilibrium equation for a theoretical model of curved composite box beams is proposed according to the virtual work principle. The finite element method is adopted to obtain the element stiffness matrix and nodal load matrix. The age-adjusted effective modulus method is introduced to address the concrete creep effects. This 26-DOF finite beam element model is able to simulate the constrained torsion, distortion, interfacial biaxial slip, shear lag, and time-dependent effects of curved composite box beams and account for curvature variation in the radial direction. An elaborate finite element model of a typical curved composite box beam is established. The correctness and applicability of the proposed finite beam element model is verified by comparing the results from the proposed beam element model to those from the elaborate finite element model. The proposed beam element model is used to analyze the long-term behavior of curved composite box beams. The analysis shows that significant changes in the displacement, stress and shear-lag coefficient occur in the curved composite beams within the first year of loading, after which the variation tendency becomes gradual. Moreover, increases in the central angle and shear connection stiffness both reduce the change rates of displacement and stress with respect to time.

6.
J Mech Behav Biomed Mater ; 73: 86-101, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28302412

RESUMO

Tilings are constructs of repeated shapes covering a surface, common in both manmade and natural structures, but in particular are a defining characteristic of shark and ray skeletons. In these fishes, cartilaginous skeletal elements are wrapped in a surface tessellation, comprised of polygonal mineralized tiles linked by flexible joints, an arrangement believed to provide both stiffness and flexibility. The aim of this research is to use two-dimensional analytical models to evaluate the mechanical performance of stingray skeleton-inspired tessellations, as a function of their material and structural parameters. To calculate the effective modulus of modeled composites, we subdivided tiles and their surrounding joint material into simple shapes, for which mechanical properties (i.e. effective modulus) could be estimated using a modification of traditional Rule of Mixtures equations, that either assume uniform strain (Voigt) or uniform stress (Reuss) across a loaded composite material. The properties of joints (thickness, Young's modulus) and tiles (shape, area and Young's modulus) were then altered, and the effects of these tessellation parameters on the effective modulus of whole tessellations were observed. We show that for all examined tile shapes (triangle, square and hexagon) composite stiffness increased as the width of the joints was decreased and/or the stiffness of the tiles was increased; this supports hypotheses that the narrow joints and high tile to joint stiffness ratio in shark and ray cartilage optimize composite tissue stiffness. Our models also indicate that, for simple, uniaxial loading, square tessellations are least sensitive and hexagon tessellations most sensitive to changes in model parameters, indicating that hexagon tessellations are the most "tunable" to specific mechanical properties. Our models provide useful estimates for the tensile and compressive properties of 2d tiled composites under uniaxial loading. These results lay groundwork for future studies into more complex (e.g. biological) loading scenarios and three dimensional structural parameters of biological tilings, while also providing insight into the mechanical roles of tessellations in general and improving the design of bioinspired materials.


Assuntos
Materiais Biomiméticos , Cartilagem/fisiologia , Modelos Biológicos , Tubarões , Animais , Fenômenos Biomecânicos , Módulo de Elasticidade , Estresse Mecânico
7.
Nanomaterials (Basel) ; 6(7)2016 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-28335252

RESUMO

The mechanical properties of silicene nanostructures subject to tensile loading were studied via a molecular dynamics (MD) simulation. The effects of temperature on Young's modulus and the fracture strain of silicene with armchair and zigzag types were examined. The maximum in-plane stress and the corresponding critical strain of the armchair and the zigzag silicene sheets at 300 K were 8.85 and 10.62, and 0.187 and 0.244 N/m, respectively. The in-plane stresses of the silicene sheet in the armchair direction at the temperatures of 300, 400, 500, and 600 K were 8.85, 8.50, 8.26, and 7.79 N/m, respectively. The in-plane stresses of the silicene sheet in the zigzag direction at the temperatures of 300, 400, 500, and 600 K were 10.62, 9.92, 9.64, and 9.27 N/m, respectively. The improved mechanical properties can be calculated in a silicene sheet yielded in the zigzag direction compared with the tensile loading in the armchair direction. The wrinklons and waves were observed at the shear band across the center zone of the silicene sheet. These results provide useful information about the mechanical and fracture behaviors of silicene for engineering applications.

8.
Acta Biomater ; 18: 226-35, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25712387

RESUMO

Various tissues in the human body, including cartilage, are known to calcify with aging. There currently is no material model that accounts for the calcification in the costal cartilage, which could affect the overall structural response of the rib cage, and thus change the mechanisms and resistance to injury. The goal of this study is to investigate, through the development of a calcifying cartilage model, whether the calcification morphologies present in the costal cartilage change its effective material properties. A calcified cartilage material model was developed using the morphologies of calcifications obtained from microCT and the relaxed elastic modulus of the human costal cartilage obtained from indentation testing. The homogenized model of calcifying cartilage found that calcifications alter the effective material behavior of the cartilage, and this effect is highly dependent on the microstructural connectivity of the calcification. Calcifications which are not contiguous with the rib bone and constitute 0-18% of the cartilage volume increase the effective elastic modulus from its baseline value of 5MPa to up to 8MPa. Calcifications which are attached to the rib bone, which typically constitute 18-25% of the cartilage volume, result in effective moduli of 20-66MPa, depending on the microstructure, and introduce marked anisotropy into the material. The calcifying cartilage model developed in this study can be incorporated into biomechanical models of the aging thorax to better understand how calcifications in the aging thorax affect the structural response of the rib cage.


Assuntos
Calcificação Fisiológica , Cartilagem Costal/fisiologia , Modelos Biológicos , Fenômenos Biomecânicos , Cartilagem Costal/diagnóstico por imagem , Módulo de Elasticidade , Humanos , Microtomografia por Raio-X
9.
J Mech Behav Biomed Mater ; 42: 26-31, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25460923

RESUMO

As the name implies, tensile size-dependency refers to the size-dependent response under uniaxial tension. It defers markedly from bending size-dependency in terms of onset and magnitude of the size-dependent response; the former begins earlier but rises to a smaller value than the latter. Experimentally, tensile size-dependent behavior is much harder to capture than its bending counterpart. This is also true in the computational effort; bending size-dependency models are more prevalent and well-developed. Indeed, many have questioned the existence of tensile size-dependency. However, recent experiments seem to support the existence of this phenomenon. Current strain gradient elasticity theories can accurately predict bending size-dependency but are unable to track tensile size-dependency. To rectify this deficiency a higher-order strain gradient elasticity model is constructed by including the second gradient of the strain into the deformation energy. Tensile experiments involving 10 wt% polycaprolactone nanofibers are performed to calibrate and verify our model. The results reveal that for the selected nanofibers, their size-dependency begins when their diameters reduce to 600 nm and below. Further, their characteristic length-scale parameter is found to be 1095.8 nm.


Assuntos
Elasticidade , Teste de Materiais , Nanofibras , Poliésteres/química , Resistência à Tração , Modelos Teóricos , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa