Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Chem ; 7: 31, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30775361

RESUMO

Phycotoxins and mycotoxins, such as paralytic shellfish poisoning toxins, type A trichothecenes, and aflatoxins are among the most toxic low molecular weight toxins associated with human poisoning incidents through the consumption of naturally contaminated food. Therefore, there is an utmost need for rapid and sensitive on-site detection systems. Herein, an electrochemical biochip for fast detection of saxitoxin, T-2 toxin as well as aflatoxin M1 and their corresponding congeners, respectively, using a portable and fully automated detection platform (pBDi, portable BioDetector integrated) was developed. Toxin analysis is facilitated upon the biochip via an indirect competitive immunoassay using toxin-specific antibodies combined with anti-idiotypic antibodies. The developed biochips enable detection in the low ng/mL-range within 17 min. Moreover, the assays cover a wide linear working range of 2-3 orders of magnitude above the limit of detection with an inter-chip coefficient of variation lower than 15%. The broad specificity of the employed antibodies which react with a large number of congeners within the respective toxin group allows efficient screening of contaminated samples for the presence of these low molecular weight toxins. With respect to the analysis of human urine samples, we focused here on the detection of saxitoxin, HT-2 toxin, and aflatoxin M1, all known as biomarkers of acute toxin exposure. Overall, it was proved that the developed biochip assays can be used to rapidly and reliably identify severe intoxications caused by these low molecular weight toxins.

2.
Toxins (Basel) ; 11(12)2019 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-31795179

RESUMO

Modern threats of bioterrorism force the need for multiple detection of biothreat agents to determine the presence or absence of such agents in suspicious samples. Here, we present a rapid electrochemical fiveplex biochip screening assay for detection of the bioterrorism relevant low molecular weight toxins saxitoxin, microcystin-LR, T-2 toxin, roridin A and aflatoxin B1 relying on anti-idiotypic antibodies as epitope-mimicking reagents. The proposed method avoids the use of potentially harmful toxin-protein conjugates usually mandatory for competitive immunoassays. The biochip is processed and analyzed on the automated and portable detection platform pBDi within 13.4 min. The fiveplex biochip assay revealed toxin group specificity to multiple congeners. Limits of detection were 1.2 ng/mL, 1.5 ng/mL, 0.4 ng/mL, 0.5 ng/mL and 0.6 ng/mL for saxitoxin, microcystin-LR, T-2 toxin, roridin A or aflatoxin B1, respectively. The robustness of the fiveplex biochip for real samples was demonstrated by detecting saxitoxin, microcystin-LR, HT-2 toxin, roridin A and aflatoxin B1 in contaminated human blood serum without elaborate sample preparation. Recovery rates were between 52-115% covering a wide concentration range. Thus, the developed robust fiveplex biochip assay can be used on-site to quickly detect one or multiple low molecular weight toxins in a single run.


Assuntos
Anticorpos/análise , Bioterrorismo , Substâncias para a Guerra Química/análise , Toxinas Biológicas/análise , Toxinas Biológicas/imunologia , Especificidade de Anticorpos , Automação , Reações Cruzadas , Técnicas Eletroquímicas , Epitopos , Desenho de Equipamento , Humanos , Imunoglobulinas/química , Imunoglobulinas/imunologia , Dispositivos Lab-On-A-Chip , Limite de Detecção , Masculino , Peso Molecular , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa