RESUMO
Bond-free integration of two-dimensional (2D) materials yields van der Waals (vdW) heterostructures with exotic optical and electronic properties. Manipulating the splitting and recombination of photogenerated electron-hole pairs across the vdW interface is essential for optoelectronic applications. Previous studies have unveiled the critical role of defects in trapping photogenerated charge carriers to modulate the photoconductive gain for photodetection. However, the nature and role of defects in tuning interfacial charge carrier dynamics have remained elusive. Here, we investigate the nonequilibrium charge dynamics at the graphene-WS2 vdW interface under electrochemical gating by operando optical-pump terahertz-probe spectroscopy. We report full control over charge separation states and thus photogating field direction by electrically tuning the defect occupancy. Our results show that electron occupancy of the two in-gap states, presumably originating from sulfur vacancies, can account for the observed rich interfacial charge transfer dynamics and electrically tunable photogating fields, providing microscopic insights for optimizing optoelectronic devices.
RESUMO
The Fano resonance in single-molecule junctions could be created by interaction with discrete and continuous molecular orbitals and enables effective electron transport modulation between constructive and destructive interference within a small energy range. However, direct observation of Fano resonance remains unexplored because of the disappearance of discrete orbitals by molecule-electrode coupling. We demonstrated the room-temperature observation of Fano resonance from electrochemical gated single-molecule conductance and current-voltage measurements of a para-carbazole anion junction. Theoretical calculations reveal that the negative charge on the nitrogen atom induces a localized HOMO on the molecular center, creating Fano resonance by interfering with the delocalized LUMO on the molecular backbone. Our findings demonstrate that the Fano resonance in electron transport through single-molecule junctions opens pathways for designs of interference-based electronic devices.
RESUMO
Direct interspecies electron transfer (DIET) between microbial species prevails in some key microbial consortia. However, the electron transfer mechanism(s) in these consortia is controversial due to lack of efficient characterization methods. Here, we provide an in situ anaerobic spectroelectrochemical coculture cell (in situ ASCC) to induce the formation of DIET coculture biofilm on the interdigitated microelectrode arrays and characterize the electron transfer directly. Two typical Geobacter DIET cocultures, Geobacter metallireducens and wild-type Geobacter sulfurreducens (G.m&G.s) and G. metallireducens and a G. sulfurreducens strain deficient in citrate synthase (G.m&G.s-ΔgltA), were selected. In situ Raman and electrochemical Fourier transform infrared (FTIR) spectroscopy indicated that cytochromes are abundant in the electric syntrophic coculture. Cyclic voltammetry and potential step experiment revealed a diffusion-controlled electron transfer process and the electrochemical gating measurements further demonstrated a cytochrome-mediated electron transfer in the DIET coculture. Furthermore, the G.m&G.s-ΔgltA coculture displayed a higher redox conductivity than the G.m&G.s coculture, consistent with the existence of an intimate and efficient electrical connection between these two species. Our findings provide the first report of a redox-gradient-driven electron transport facilitated by c-type cytochromes in DIET coculture, supporting the model that DIET is mediated by cytochromes and suggest a platform to explore the other DIET consortia.
Assuntos
Geobacter , Técnicas de Cocultura , Citocromos/metabolismo , Transporte de Elétrons , Geobacter/metabolismo , OxirreduçãoRESUMO
The next future strategies for improved occupational safety and health management could largely benefit from wearable and Internet of Things technologies, enabling the real-time monitoring of health-related and environmental information to the wearer, to emergency responders, and to inspectors. The aim of this study is the development of a wearable gas sensor for the detection of NH3 at room temperature based on the organic semiconductor poly(3,4-ethylenedioxythiophene) (PEDOT), electrochemically deposited iridium oxide particles, and a hydrogel film. The hydrogel composition was finely optimised to obtain self-healing properties, as well as the desired porosity, adhesion to the substrate, and stability in humidity variations. Its chemical structure and morphology were characterised by infrared spectroscopy and scanning electron microscopy, respectively, and were found to play a key role in the transduction process and in the achievement of a reversible and selective response. The sensing properties rely on a potentiometric-like mechanism that significantly differs from most of the state-of-the-art NH3 gas sensors and provides superior robustness to the final device. Thanks to the reliability of the analytical response, the simple two-terminal configuration and the low power consumption, the PEDOT:PSS/IrOx Ps/hydrogel sensor was realised on a flexible plastic foil and successfully tested in a wearable configuration with wireless connectivity to a smartphone. The wearable sensor showed stability to mechanical deformations and good analytical performances, with a sensitivity of 60 ± 8 µA decade-1 in a wide concentration range (17-7899 ppm), which includes the safety limits set by law for NH3 exposure.
Assuntos
Amônia , Dispositivos Eletrônicos Vestíveis , Porosidade , Potenciometria , Reprodutibilidade dos TestesRESUMO
Materials with electrically tunable optical properties offer a wide range of opportunities for photonic applications. The optical properties of the single-walled carbon nanotubes (SWCNTs) can be significantly altered in the near-infrared region by means of electrochemical doping. The states' filling, which is responsible for the optical absorption suppression under doping, also alters the nonlinear optical response of the material. Here, for the first time we report that the electrochemical doping can tailor the nonlinear optical absorption of SWCNT films and demonstrate its application to control pulsed fiber laser generation. With a pump-probe technique, we show that under an applied voltage below 2 V the photobleaching of the material can be gradually reduced and even turned to photoinduced absorption. Furthermore, we integrated a carbon nanotube electrochemical cell on a side-polished fiber to tune the absorption saturation and implemented it into the fully polarization-maintaining fiber laser. We show that the pulse generation regime can be reversibly switched between femtosecond mode-locking and microsecond Q-switching using different gate voltages. This approach paves the road toward carbon nanotube optical devices with tunable nonlinearity.
RESUMO
The transport of electrons along photosynthetic and respiratory chains involves a series of enzymatic reactions that are coupled through redox mediators, including proteins and small molecules. The use of native and synthetic redox probes is key to understanding charge transport mechanisms and to the design of bioelectronic sensors and solar energy conversion devices. However, redox probes have limited tunability to exchange charge at the desired electrochemical potentials (energy levels) and at different protein sites. Herein, we take advantage of electrochemical scanning tunneling microscopy (ECSTM) to control the Fermi level and nanometric position of the ECSTM probe in order to study electron transport in individual photosystemâ I (PSI) complexes. Current-distance measurements at different potentiostatic conditions indicate that PSI supports long-distance transport that is electrochemically gated near the redox potential of P700, with current extending farther under hole injection conditions.
RESUMO
Charge transport phenomena in single-molecule junctions are often dominated by tunneling, with a transmission function dictating the probability that electrons or holes tunnel through the junction. Here, we present a new and simple technique for measuring the transmission functions of molecular junctions in the coherent tunneling limit, over an energy range of 1.5 eV around the Fermi energy. We create molecular junctions in an ionic environment with electrodes having different exposed areas, which results in the formation of electric double layers of dissimilar density on the two electrodes. This allows us to electrostatically shift the molecular resonance relative to the junction Fermi levels in a manner that depends on the sign of the applied bias, enabling us to map out the junction's transmission function and determine the dominant orbital for charge transport in the molecular junction. We demonstrate this technique using two groups of molecules: one group having molecular resonance energies relatively far from EF and one group having molecular resonance energies within the accessible bias window. Our results compare well with previous electrochemical gating data and with transmission functions computed from first principles. Furthermore, with the second group of molecules, we are able to examine the behavior of a molecular junction as a resonance shifts into the bias window. This work provides a new, experimentally simple route for exploring the fundamentals of charge transport at the nanoscale.
RESUMO
Using a scanning tunnelling microscope break-junction technique, we produce 4,4'-bipyridine (44BP) single-molecule junctions with Ni and Au contacts. Electrochemical control is used to prevent Ni oxidation and to modulate the conductance of the devices via nonredox gating--the first time this has been shown using non-Au contacts. Remarkably the conductance and gain of the resulting Ni-44BP-Ni electrochemical transistors is significantly higher than analogous Au-based devices. Ab-initio calculations reveal that this behavior arises because charge transport is mediated by spin-polarized Ni d-electrons, which hybridize strongly with molecular orbitals to form a "spinterface". Our results highlight the important role of the contact material for single-molecule devices and show that it can be varied to provide control of charge and spin transport.
Assuntos
Ouro , Transistores Eletrônicos , Níquel , PiridinasRESUMO
We studied charge transport through core-substituted naphthalenediimide (NDI) single-molecule junctions using the electrochemical STM-based break-junction technique in combination with DFT calculations. Conductance switching among three well-defined states was demonstrated by electrochemically controlling the redox state of the pendent diimide unit of the molecule in an ionic liquid. The electrical conductances of the dianion and neutral states differ by more than one order of magnitude. The potential-dependence of the charge-transport characteristics of the NDI molecules was confirmed by DFT calculations, which account for electrochemical double-layer effects on the conductance of the NDI junctions. This study suggests that integration of a pendant redox unit with strong coupling to a molecular backbone enables the tuning of charge transport through single-molecule devices by controlling their redox states.
RESUMO
This study reports the use of Keplerate-type {Mo72Fe30} polyoxometalate (POMs) nanostructures as a bi-functional-electrocatalyst for HER and OER in an alkaline medium with a lower overpotential (135 mV for HER and 264 mV for OER), and excellent electrochemical stability. The bi-functional catalytic properties of {Mo72Fe30} POM are studied using a scanning electrochemical microscope (SECM) via current mapping using substrate generation and tip collection mode. Furthermore, the bipolar nature of the {Mo72Fe30} POM nano-electrocatalysts is studied using the electrochemical gating via simultaneous monitoring of the electrochemical (cell) and electrical ({Mo72Fe30} POM) signals. Next, a prototype water electrolyzer fabricated using {Mo72Fe30} POM electrocatalysts showed they can drive 10 mA cm-2 with a low cell voltage of 1.62 V in lab-scale test conditions. Notably, the {Mo72Fe30} POM electrolyzers' performance assessment based on recommended conditions for industrial aspects shows that they require a very low overpotential of 1.89 V to drive 500 mA cm-2, highlighting their promising candidature toward clean-hydrogen production.
RESUMO
In alignment with the increasing demand for larger storage capacity and longer data retention, the electrical control of magnetic anisotropy has been a research focus in the realm of spintronics. Typically, magnetic anisotropy is determined by grain dimensionality, which is set during the fabrication of magnetic thin films. Despite the intrinsic correlation between magnetic anisotropy and grain dimensionality, there is a lack of experimental evidence for electrically controlling grain dimensionality, thereby impairing the efficiency of magnetic anisotropy modulation. Here, we demonstrate an electric field control of grain dimensionality and prove it as the active mechanism for tuning interfacial magnetism. The reduction in grain dimensionality is associated with a transition from ferromagnetic to superparamagnetic behavior. We achieve a nonvolatile and reversible modulation of the coercivity in both the ferromagnetic and superparamagnetic regimes. Subsequent electrical and elemental analysis confirms the variation in grain dimensionality upon the application of gate voltages, revealing a transition from a multidomain to a single-domain state, accompanied by a reduction in grain dimensionality. Furthermore, we exploit the influence of grain dimensionality on domain wall motion, extending its applicability to multilevel magnetic memory and synaptic devices. Our results provide a strategy for tuning interfacial magnetism through grain size engineering for advancements in high-performance spintronics.
RESUMO
Electroactive bacterial biofilms can function as living biomaterials that merge the functionality of living cells with electronic components. However, the development of such advanced living electronics has been challenged by the inability to control the geometry of electroactive biofilms relative to solid-state electrodes. Here, we developed a lithographic strategy to pattern conductive biofilms of Shewanella oneidensis by controlling aggregation protein CdrAB expression with a blue light-induced genetic circuit. This controlled deposition enabled S. oneidensis biofilm patterning on transparent electrode surfaces, and electrochemical measurements allowed us to both demonstrate tunable conduction dependent on pattern size and quantify the intrinsic conductivity of the living biofilms. The intrinsic biofilm conductivity measurements enabled us to experimentally confirm predictions based on simulations of a recently proposed collision-exchange electron transport mechanism. Overall, we developed a facile technique for controlling electroactive biofilm formation on electrodes, with implications for both studying and harnessing bioelectronics.
Assuntos
Shewanella , Biofilmes , Condutividade Elétrica , Eletrodos , Transporte de Elétrons , Proteômica , Shewanella/metabolismoRESUMO
The behavior of liquid water molecules near an electrified interface is important to many disciplines of science and engineering. In this study, we applied an external gate potential to the silica/water interface via an electrolyte-insulator-semiconductor (EIS) junction to control the surface charging state. Without varying the ionic composition in water, the electrical gating allowed an efficient tuning of the interfacial charge density and field. Using the sum-frequency vibrational spectroscopy, we found a drastic enhancement of interfacial OH vibrational signals at high potential in weakly acidic water, which exceeded that from conventional bulk-silica/water interfaces even in strong basic solutions. Analysis of the spectra indicated that it was due to the alignment of liquid water molecules through the electric double layer, where the screening was weak because of the low ion density. Such a combination of strong field and weak screening demonstrates the unique tuning capability of the EIS scheme, and would allow us to investigate a wealth of phenomena at charged oxide/water interfaces.
RESUMO
Electrical control of material properties based on ionic liquids (IL) has seen great development and emerging applications in the field of functional oxides, mainly understood by the electrostatic and electrochemical gating mechanisms. Compared to the fast, flexible, and reproducible electrostatic gating, electrochemical gating is less controllable owing to the complex behaviors of ion migration. Here, the interface-dependent oxygen migration by electrochemical gating is resolved at the atomic scale in the LaAlO3-SrTiO3 system through ex situ IL gating experiments and on-site atomic-resolution characterization. The difference between interface structures leads to the controllable electrochemical oxygen migration by filling oxygen vacancies. The findings not only provide an atomic-scale insight into the origin of interface-dependent electrochemical gating but also demonstrate an effective way of engineering interface structure to control the electrochemical gating.
RESUMO
PbS nanocrystals are surface-functionalized with the organic semiconductor 5,5â³-dithiol-[2,2':5,2â³-terthiophene] and assembled to afford hybrid nanostructured thin films with a large structural coherence and an electron mobility of 0.2 cm2/(V s). Electrochemistry, optical spectroscopy, and quantum mechanical calculations are applied to elucidate the electronic structure at the inorganic/organic interface, and it is established that electron injection into the molecule alters its (electronic) structure, which greatly facilitates coupling of the neighboring PbS 1Se states. This is verified by field-effect and electrochemically gated transport measurements, and evidence is provided that carrier transport occurs predominantly via the 1Se states. The presented material allows studying structure-transport correlations and exploring transport anisotropies in semiconductor nanocrystal superlattices.