Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; : e2403311, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874118

RESUMO

Developing a highly efficient catalyst for electrocatalytic urea oxidation reaction (UOR) is not only beneficial for the degradation of urea pollutants in wastewater but also provides a benign route for hydrogen production. Herein, a sulfur-vacancy (Sv) engineering is proposed to accelerate the formation of metal (oxy)hydroxide on the surface of Ni-Co bimetal sulfide nanosheet arrays on nickel foam (Sv-CoNiS@NF) for boosting the urea oxidation electrocatalysis. As a result, the obtained Sv-CoNiS@NF demonstrates an outstanding electrocatalytic UOR performance, which requires a low potential of only 1.397 V versus the reversible hydrogen electrode to achieve the current density of 100 mA cm-2. The ex situ Raman spectra and density functional theory calculations reveal the key roles of the Sv site and Co9S8 in promoting the electrocatalytic UOR performance. This work provides a new strategy for accelerating the transformation of electrocatalysts to active metallic (oxy)hydroxide for urea electrolysis via engineering the surface vacancies.

2.
Small ; 20(1): e2304792, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37649199

RESUMO

Large-capacity energy storage devices are attracting widespread research attention. However, the decreased capacity of these devices due to cold weather is a huge obstacle for their practical use. In this study, an electrochemical self-adaptive reconstructed Cux S/Cu(OH)2 -based symmetric energy storage device is proposed. This device provides a satisfactorily enhanced photothermal capacity under solar irradiation. After electrochemical reconstruction treatment, the morphological structure is rearranged and the Cux S component is partially converted to electrochemically active Cu(OH)2 with the introduction of a large number of active sites. The resulting Cux S/Cu(OH)2 electrode provides a significant capacitance of 115.2 F cm-2 at 5 mA cm-2 . More importantly, its wide working potential range and superior photo-to-thermal conversion ability endow Cux S/Cu(OH)2 with superb performance as full-purpose photothermally enhanced capacitance electrodes. Under solar irradiation, the surface temperature of Cux S/Cu(OH)2 is elevated by 76.6 °C in only 30 s, and the capacitance is boosted to 230.4% of the original capacitance at a low temperature. Furthermore, the assembled symmetric energy storage device also delivers a photothermal capacitance enhancement of 200.3% under 15 min solar irradiation.

3.
Small ; : e2405051, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39092657

RESUMO

Metal-organic frameworks (MOFs)-related Cu materials are promising candidates for promoting electrochemical CO2 reduction to produce valuable chemical feedstocks. However, many MOF materials inevitable undergo reconstruction under reduction conditions; therefore, exploiting the restructuring of MOF materials is of importance for the rational design of high-performance catalyst targeting multi-carbon products (C2). Herein, a facile solvent process is choosed to fabricate HKUST-1 with an anionic framework (a-HKUST-1) and utilize it as a pre-catalyst for alkaline CO2RR. The a-HKUST-1 catalyst can be electrochemically reduced into Cu with significant structural reconstruction under operating reaction conditions. The anionic HKUST-1 derived Cu catalyst (aHD-Cu) delivers a FEC2H4 of 56% and FEC2 of ≈80% at -150 mA cm-2 in alkaline electrolyte. The resulting aHD-Cu catalyst has a high electrochemically active surface area and low coordinated sites. In situ Raman spectroscopy indicates that the aHD-Cu surface displays higher coverage of *CO intermediates, which favors the production of hydrocarbons.

4.
Nano Lett ; 23(11): 5027-5034, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37249308

RESUMO

Tuning the electroactive surface species of electrocatalysts remains a significant challenge for achieving highly efficient oxygen evolution reactions. Herein, we propose an innovative in situ leaching strategy, modulated by cationic oxidation, to achieve active self-reconstruction of these catalysts. Vanadium is introduced as a cation into Ni3S2 and oxidized under low oxidative potential, leading to subsequent leaching into the electrolyte and triggering self-reconstruction. The structural evolution from V-Ni3S2 to Ni(OH)2 and subsequently to NiOOH is identified by operando Raman as a three-step transition. In contrast, V-free Ni3S2 is unable to bypass the thermodynamically predicted nickel oxysulfide products to transform into active NiOOH. As a result, the self-restructured V-Ni3S2 only needs an ultralow overpotential of 155 mV at 10 mA cm-2, outperforming V-free Ni3S2 and many other advanced catalysts. This work provides new guidelines for manipulating in situ leaching to modulate the self-reconstruction of catalysts.

5.
Angew Chem Int Ed Engl ; : e202412821, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39105426

RESUMO

The rational manipulation of the surface reconstruction of catalysts is a key factor in achieving highly efficient water oxidation, but it is a challenge due to the complex reaction conditions. Herein, we introduce a novel in situ reconstruction strategy under a gradient magnetic field to form highly catalytically active species on the surface of ferromagnetic/paramagnetic CoFe2O4@CoBDC core-shell structure for electrochemical oxygen evolution reaction (OER). We demonstrate that the Kelvin force from the cores' local gradient magnetic field modulates the shells' surface reconstruction, leading to a higher proportion of Co2+ as active sites. These Co sites with optimized electronic configuration exhibit more favorable adsorption energy for oxygen-containing intermediates and lower the activation energy of the overall catalytic reaction. As a result, a significant enhancement in OER performance is achieved with a large current density increment about 128 % at 1.63 V and an overpotential reduction by 28 mV at 10 mA cm-2 after reconstruction. Interestingly, after removing the external magnetic field, the activity could persist for over 100 h. This work showcases the directional surface reconstruction of catalysts under a gradient magnetic field for enhanced water oxidation.

6.
Small ; 19(26): e2300046, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36929623

RESUMO

The unique properties of self-healing materials hold great potential in battery systems, which can exhibit excellent deformability and return to its original shape after cycling. Herein, a Cu3 BiS3 anode material with self-healing mechanisms is proposed for use in ultrastable potassium-ion battery (PIB) and potassium-ion hybrid capacitor (PIHC). Different from the binder design, Cu3 BiS3 anode can exhibit the dual advantages of phase and morphological reversibility, further remaining original property after potassiation/depotassiation and exhibiting ultrastable cycling performance. The reversible electrochemical reconstruction during the continuous charge/discharge processes is beneficial to maintain the structure and function of the material. Furthermore, the conversion reactions during the charge and discharge process produce two advantages: i) suppressing the shuttle effect due to the formation of the heterostructure interface between Cu (111) and Bi (012); ii) Cu can avoid the agglomeration of Bi nanoparticles (NPs), further improving the electrochemical performance and long-cycle stability of the Cu3 BiS3 electrode. As a result, the Cu3 BiS3 electrode not only exhibits a long cycle life in half cells, but also 2000 cycles and 12000 cycles in PIB and PIHC full cells, respectively.

7.
Small ; 19(23): e2207374, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36896986

RESUMO

The high-rate ethanol electrosynthesis from CO2 is challenging due to the low selectivity and poor activity, which requires the competition with other reduction products and H2 . Here, the electrochemical reconstruction of Cs3 Cu2 Cl5 perovskite to form surface Cl-bonded, low-coordinated Cs modified Cu(200) nanocubes (CuClCs), is demonstrated. Density functional theory calculations reveal that the CuClCs structure possesses low Bader charges and a large coordination capacity; and thus, can promote the CO2 -to-ethanol pathway via stabilizing C-O bond in oxygenate intermediates. The CuClCs catalyst exhibits outstanding partial current densities for producing ethanol (up to 2124 ± 54 mA cm-2 ) as one of the highest reported values in the electrochemical CO2 or CO reduction. This work suggests an attractive strategy with surface alkali-metal cations for ampere-level CO2 -to-ethanol electrosynthesis.

8.
Angew Chem Int Ed Engl ; 62(25): e202303117, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37078760

RESUMO

Bismuth-based materials have been recognized as promising catalysts for the electrocatalytic CO2 reduction reaction (ECO2 RR). However, they show poor selectivity due to competing hydrogen evolution reaction (HER). In this study, we have developed an edge defect modulation strategy for Bi by coordinating the edge defects of bismuth (Bi) with sulfur, to promote ECO2 RR selectivity and inhibit the competing HER. The prepared catalysts demonstrate excellent product selectivity, with a high HCOO- Faraday efficiency of ≈95 % and an HCOO- partial current of ≈250 mA cm-2 under alkaline electrolytes. Density function theory calculations reveal that sulfur tends to bind to the Bi edge defects, reducing the coordination-unsaturated Bi sites (*H adsorption sites), and regulating the charge states of neighboring Bi sites to improve *OCHO adsorption. This work deepens our understanding of ECO2 RR mechanism on bismuth-based catalysts, guiding for the design of advanced ECO2 RR catalysts.


Assuntos
Bismuto , Dióxido de Carbono , Formiatos , Enxofre , Hidrogênio
9.
Angew Chem Int Ed Engl ; 62(43): e202311909, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37671744

RESUMO

Metal-organic frameworks (MOFs) have been increasingly applied in oxygen evolution reaction (OER), and the surface of MOFs usually undergoes structural transformation to form metal oxyhydroxides to serve as catalytically active sites. However, the controllable regulation of the reconstruction process of MOFs remains as a great challenge. Here we report a defect engineering strategy to facilitate the structural transformation of MOFs to metal oxyhydroxides during OER with enhanced activity. Defective MOFs (denoted as NiFc'x Fc1-x ) with abundant unsaturated metal sites are constructed by mixing ligands of 1,1'-ferrocene dicarboxylic acid (Fc') and defective ferrocene carboxylic acid (Fc). NiFc'x Fc1-x series are more prone to be transformed to metal oxyhydroxides compared with the non-defective MOFs (NiFc'). Moreover, the as-formed metal oxyhydroxides derived from defective MOFs contain more oxygen vacancies. NiFc'Fc grown on nickel foam exhibits excellent OER catalytic activity with an overpotential of 213 mV at the current density of 100 mA cm-2 , superior to that of undefective NiFc'. Experimental results and theoretical calculations suggest that the abundant oxygen vacancies in the derived metal oxyhydroxides facilitate the adsorption of oxygen-containing intermediates on active centers, thus significantly improving the OER activity.

10.
Angew Chem Int Ed Engl ; 62(24): e202217337, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37074107

RESUMO

Electrocatalytic nitrate reduction sustainably produces ammonia and alleviates water pollution, yet is still challenging due to the kinetic mismatch and hydrogen evolution competition. Cu/Cu2 O heterojunction is proven effective to break the rate-determining NO3 - -to-NO2 - step for efficient NH3 conversion, while it is unstable due to electrochemical reconstruction. Here we report a programmable pulsed electrolysis strategy to achieve reliable Cu/Cu2 O structure, where Cu is oxidized to CuO during oxidation pulse, then regenerating Cu/Cu2 O upon reduction. Alloying with Ni further modulates hydrogen adsorption, which transfers from Ni/Ni(OH)2 to N-containing intermediates on Cu/Cu2 O, promoting NH3 formation with a high NO3 - -to-NH3 Faraday efficiency (88.0±1.6 %, pH 12) and NH3 yield rate (583.6±2.4 µmol cm-2 h-1 ) under optimal pulsed conditions. This work provides new insights to in situ electrochemically regulate catalysts for NO3 - -to-NH3 conversion.

11.
Angew Chem Int Ed Engl ; 61(49): e202211585, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36217882

RESUMO

Herein, we have demonstrated the control over the structure of precatalysts to tune the properties of the active catalysts and their water oxidation activity. The reaction of K3 [Fe(CN)6 ] and Na2 [Fe(CN)5 (NO)] with Co(OH)2 @CC produced precatalysts PC-1 and PC-2, respectively, with distinct structural and electronic features. The replacement of the -CN group with strong π-acceptor -NO modulates the electronic and atomic structure of PC-2. As a result, a facile electrochemical transformation of PC-2 into active catalyst Fe-Co(OH)2 -Co(O)OH (AC-2) has been attained only in 15 CV cycles while 600 CV cycles are required for the electrochemical activation of PC-1 into AC-1. The X-ray absorption studies reveal the contraction of the Co-O and Fe-O bond in AC-2 because of the presence of a higher amount of Co3+ and Fe3+ than in AC-1. The high valent Co3+ and Fe3+ modulates the electronic properties of AC-2 and assists in the O-O bond formation, leading to the improved water oxidation activity.

12.
Nano Lett ; 20(10): 7751-7759, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-32959660

RESUMO

Developing efficient Pt-based electrocatalysts for the methanol oxidation reaction (MOR) is of pivotal importance for large-scale application of direct methanol fuel cells (DMFCs), but Pt suffers from severe deactivation brought by the carbonaceous intermediates such as CO. Here, we demonstrate the formation of a bismuth oxyhydroxide (BiOx(OH)y)-Pt inverse interface via electrochemical reconstruction for enhanced methanol oxidation. By combining density functional theory calculations, X-ray absorption spectroscopy, ambient pressure X-ray photoelectron spectroscopy, and electrochemical characterizations, we reveal that the BiOx(OH)y-Pt inverse interface can induce the electron deficiency of neighboring Pt; this would result in weakened CO adsorption and strengthened OH adsorption, thereby facilitating the removal of the poisonous intermediates and ensuring the high activity and good stability of Pt2Bi sample. This work provides a comprehensive understanding of the inverse interface structure and deep insight into the active sites for MOR, offering great opportunities for rational fabrication of efficient electrocatalysts for DMFCs.

13.
Adv Mater ; 36(23): e2312618, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38439598

RESUMO

Spin engineering is a promising way to modulate the interaction between the metal d-orbital and the intermediates and thus enhance the catalytic kinetics. Herein, an innovative strategy is reported to modulate the spin state of Co by regulating its coordinating environment. o-c-CoSe2-Ni is prepared as pre-catalyst, then in situ electrochemical impedance spectroscopy (EIS) and in situ Raman spectroscopy are employed to prove phase transition, and CoOOH/Co3O4 is formed on the surface as active sites. In hybrid water electrolysis, the voltage has a negative shift, and in zinc-ethanol-air battery, the charging voltage is lowered and the cycling stability is greatly increased. Coordinated atom substitution and crystalline symmetry change are combined to regulate the absorption ability of reaction intermediates with balanced optimal adsorption. Coordinated atom substitution weakens the adsorption while the crystalline symmetry change strengthens the adsorption. Importantly, the tetrahedral sites are introduced by Ni doping which enables the co-existence of four-coordinated sites and six-coordination sites in o-c-CoSe2-Ni. The dz2 + dx2-y2 orbital occupancy decreases after the atomic substitution, while increases after replacing the CoSe6-Oh field with CoSe6-Oh/CoSe4-Td. This work explores a new direction for the preparation of efficient catalysts for water electrolysis and innovative zinc-ethanol-air battery.

14.
Adv Mater ; 36(7): e2310270, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38014758

RESUMO

While cost-effective sodium-ion batteries (SIBs) with crystalline silicon anodes promise high theoretical capacities, they perform poorly because silicon stores sodium ineffectively (capacity <40 mAh g-1 ). To address this issue, herein an atomic-order structural-design tactic is adopted for obtaining unique multilevel gradient-ordered silicon (MGO-Si) by simple electrochemical reconstruction. In situ-formed short-range-, medium-range-, and long-range-ordered structures construct a stable MGO-Si, which contributes to favorable Na-Si interaction and fast ion diffusion channels. These characteristics afford a high reversible capacity (352.7 mAh g-1 at 50 mA g-1 ) and stable cycling performance (95.2% capacity retention after 4000 cycles), exhibiting record values among those reported for pure silicon electrodes. Sodium storage of MGO-Si involves an adsorption-intercalation mechanism, and a stepwise construction strategy of gradient-ordered structure further improves the specific capacity (339.5 mAh g-1 at 100 mA g-1 ). Reconstructed Si/C composites show a high reversible capacity of 449.5 mAh g-1 , significantly better than most carbonaceous anodes. The universality of this design principle is demonstrated for other inert or low-capacity materials (micro-Si, SiO2 , SiC, graphite, and TiO2 ), boosting their capacities by 1.5-6 times that of pristine materials, thereby providing new solutions to facilitate sodium storage capability for better-performing battery designs.

15.
Adv Mater ; 36(26): e2403229, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38598727

RESUMO

Li-CO2 batteries are regarded as promising high-energy-density energy conversion and storage devices, but their practicability is severely hindered by the sluggish CO2 reduction/evolution reaction (CORR/COER) kinetics. Due to the various crystal structures and unique electronic configuration, Mn-based cathode catalysts have shown considerable competition to facilitate CORR/COER. However, the specific active sites and regulation principle of Mn-based catalysts remain ambiguous and limited. Herein, this work designs novel Mn dual-active sites (MOC) supported on N-doped carbon nanofibers and conduct a comprehensive investigation into the underlying relationship between different Mn active sites and their electrochemical performance in Li-CO2 batteries. Impressively, this work finds that owing to the in situ generation and stable existence of Mn(III), MOC undergoes obvious electrochemical reconstruction during battery cycling. Moreover, a series of characterizations and theoretical calculations demonstrate that the different electronic configurations and coordination environments of Mn(II) and Mn(III) are conducive to promoting CORR and COER, respectively. Benefiting from such a modulating behavior, the Li-CO2 batteries deliver a high full discharge capacity of 10.31 mAh cm-2, and ultra-long cycle life (327 cycles/1308 h). This fundamental understanding of MOC reconstruction and the electrocatalytic mechanisms provides a new perspective for designing high-performance multivalent Mn-integrated hybrid catalysts for Li-CO2 batteries.

16.
J Colloid Interface Sci ; 672: 383-391, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38848622

RESUMO

Electrocatalytic nitrate removal offers a sustainable approach to alleviate nitrate pollution and to boost the anthropogenic nitrogen cycle, but it still suffers from limited removal efficiency at high rates, especially at low levels of nitrate. Herein, we report the near-complete removal of low-level nitrate (10-200 ppm) within 2 h using ultrathin cobalt-based nanosheets (CoNS) containing surface oxygen, which was fabricated from in-situ electrochemical reconstruction of conventional nanosheets. The average nitrate removal of 99.7 % with ammonia selectivity of 98.2 % in 9 cyclic runs ranked in the best of reported catalysts. Powered by a solar cell under the winter sun, the full-cell nitrate electrolysis system, equipped with ultrathin CoNS, achieved 100 % nitrogen gas selectivity and 99.6 % total nitrogen removal. The in-situ Fourier Transform Infrared included experiments and theoretical computations revealed that in-situ electrochemical reconstruction not only increased electrochemical active surface area but also constructed surface oxygen in active sites, leading to enhanced stabilization of nitrate adsorption in a symmetry breaking configuration and charge transfer, contributing to near-complete nitrate removal on ultrathin CoNS. This work provides a strategy to design ultrathin nanocatalysts for nitrate removal.

17.
J Colloid Interface Sci ; 668: 607-617, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38696989

RESUMO

Transition metal-based electrocatalysts generally take place surface reconstruction in alkaline conditions, but little is known about how to improve the reconstruction to a highly active oxyhydroxide surface for an efficient and stable oxygen evolution reaction (OER). Herein, we develop a strategy to accelerate surface reconstruction by combining boron modification and cyclic voltammetry (CV) activation. Density functional theory calculations and in-situ/ex-situ characterizations indicate that both B-doping and electrochemical activation can reduce the energy barrier and contribute to the surface evolution into highly active oxyhydroxides. The formed oxyhydroxide active phase can tune the electronic configuration and boost the OER process. The reconstructed catalyst of CV-B-NiFe-LDH displays excellent alkaline OER performance in freshwater, simulated seawater, and natural seawater with low overpotentials at 100 mA cm-2 (η100: 219, 236, and 255 mV, respectively) and good durability. This catalyst also presents outstanding Cl- corrosion resistance in alkalized seawater electrolytes. The CV-B-NiFe-LDH||Pt/C electrolyzer reveals prominent performance for alkalized freshwater/seawater splitting. This study provides a guideline for developing advanced OER electrocatalysts by promoting surface reconstruction.

18.
Adv Mater ; 35(2): e2207041, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36281800

RESUMO

Water electrolysis is a promising technique for carbon neutral hydrogen production. A great challenge remains at developing robust and low-cost anode catalysts. Many pre-catalysts are found to undergo surface reconstruction to give high intrinsic activity in the oxygen evolution reaction (OER). The reconstructed oxyhydroxides on the surface are active species and most of them outperform directly synthesized oxyhydroxides. The reason for the high intrinsic activity remains to be explored. Here, a study is reported to showcase the unique reconstruction behaviors of a pre-catalyst, thiospinel CoFe2 S4 , and its reconstruction chemistry for a high OER activity. The reconstruction of CoFe2 S4 gives a mixture with both Fe-S component and active oxyhydroxide (Co(Fe)Ox Hy ) because Co is more inclined to reconstruct as oxyhydroxide, while the Fe is more stable in Fe-S component in a major form of Fe3 S4 . The interface spin channel is demonstrated in the reconstructed CoFe2 S4 , which optimizes the energetics of OER steps on Co(Fe)Ox Hy species and facilitates the spin sensitive electron transfer to reduce the kinetic barrier of O-O coupling. The advantage is also demonstrated in a membrane electrode assembly (MEA) electrolyzer. This work introduces the feasibility of engineering the reconstruction chemistry of the precatalyst for high performance and durable MEA electrolyzers.

19.
Natl Sci Rev ; 10(9): nwad078, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37565207

RESUMO

Solid oxide electrolysis cells provide a practical solution for the direct conversion of CO2 to other chemicals (i.e. CO), however, an in-depth mechanistic understanding of the dynamic reconstruction of active sites for perovskite cathodes during CO2 electrolysis remains a great challenge. Herein, we identify that iridium-doped Sr2Fe1.45Ir0.05Mo0.5O6-δ (SFIrM) perovskite displays a dynamic electrochemical reconstruction feature during CO2 electrolysis with abundant exsolution of highly dispersed IrFe alloy nanoparticles on the SFIrM surface. The in situ reconstructed IrFe@SFIrM interfaces deliver a current density of 1.46 A cm-2 while maintaining over 99% CO Faradaic efficiency, representing a 25.8% improvement compared with the Sr2Fe1.5Mo0.5O6-δ counterpart. In situ electrochemical spectroscopy measurements and density functional theory calculations suggest that the improved CO2 electrolysis activity originates from the facilitated formation of carbonate intermediates at the IrFe@SFIrM interfaces. Our work may open the possibility of using an in situ electrochemical poling method for CO2 electrolysis in practice.

20.
Adv Sci (Weinh) ; 10(16): e2300717, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37026683

RESUMO

Nickel-iron based hydr(oxy)oxides have been well recognized as one of the best oxygen-evolving catalysts in alkaline water electrolysis. A crucial problem, however, is that iron leakage during prolonged operation would lead to the oxygen evolution reaction (OER) deactivation over time, especially under large current densities. Here, the NiFe-based Prussian blue analogue (PBA) is designed as a structure-flexible precursor for navigating an electrochemical self-reconstruction (ECSR) with Fe cation compensation to fabricate a highly active hydr(oxy)oxide (NiFeOx Hy ) catalyst stabilized with NiFe synergic active sites. The generated NiFeOx Hy catalyst exhibits the low overpotentials of 302 and 313 mV required to afford large current densities of 500 and 1000 mA cm-2 , respectively. Moreover, its robust stability over 500 h at 500 mA cm-2 stands out among the NiFe-based OER catalysts reported previously. Various in/ex situ studies indicate that the Fe fixation by dynamic reconstruction process can reinforce the Fe-activated effect on the OER amenable to the industrial-level large current conditions against the Fe leakage. This work opens up a feasible strategy to design highly active and durable catalysts via thermodynamically self-adaptive reconstruction engineering.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa