Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(16)2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37629151

RESUMO

The development of Metabolic Syndrome (MetS) affects a large number of people around the world and represents a major issue in the field of health. Thus, it is important to implement new strategies to reduce its prevalence, and various approaches are currently under development. Recently, an eco-friendly technology named electrodialysis with ultrafiltration membrane (EDUF) was used successfully for the first time at a semi-industrial scale to produce three fractions concentrated in bioactive peptides (BPs) from an enzymatically hydrolyzed whey protein concentrate (WPC): the initial (F1), the final (F2) and the recovery fraction (F3), and it was demonstrated in vitro that F3 exhibited interesting DPP-IV inhibitory effects. Therefore, the present study aimed to evaluate the effect of each fraction on in vivo models of obesity. A daily dose of 312.5 mg/kg was administered to High Fat/High Sucrose diet (HFHS) induced C57BL6/J mice for eight weeks. The physiological parameters of each group and alterations of their gut microbiota by the fractions were assessed. Little effect of the different fractions was demonstrated on the physiological state of the mice, probably due to the digestion process of the BP content. However, there were changes in the gut microbiota composition and functions of mice treated with F3.


Assuntos
Microbioma Gastrointestinal , Síndrome Metabólica , Animais , Camundongos , Síndrome Metabólica/terapia , Hidrolisados de Proteína/farmacologia , Ultrafiltração , Soro do Leite , Camundongos Endogâmicos C57BL
2.
Membranes (Basel) ; 12(4)2022 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-35448379

RESUMO

The separation by electrodialysis with ultrafiltration membranes (EDUF), at a semi-industrial scale, of a new whey protein hydrolysate obtained from a whey protein concentrate was assessed. After 6 h of treatment, more than 9 g of peptides were recovered in the peptide recovery fraction, for a recovery yield of 5.46 ± 0.56% and containing 18 major components. Among these components, positively charged peptides, such as ALPMHIR + PHMIR, LIVTQTMK and TKIPAVF, were present, and their relative abundances increased by nearly 1.25 X and up to 7.55 X. The presence of these peptides may be promising, as ALPMHIR has a strong activity against angiotensin-converting enzyme (ACE), and LIVTQTMK has structural properties that could interfere with dipeptidyl peptidase-IV (DPP-IV). Many neutral peptides were also recovered alongside those. Nevertheless, the inhibitory activity against DPP-IV and ACE increased from 2 X and 4 X, respectively, in the peptide recovery fraction compared to the initial hydrolysate, due to the improved content in bioactive peptides. Thus, this new hydrolysate is well-suited for the large-scale production of a peptide fraction with high bioactivities. Furthermore, what was achieved in this work came close to what could be achieved for the industrial production of a bioactive peptide fraction from whey proteins.

3.
Food Chem ; 304: 125448, 2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-31491713

RESUMO

Blood, from slaughterhouses, is an inevitable part of meat production, causing environmental problems due to the large volumes recovered and its low valorization. However, the α137-141 peptide, a natural antimicrobial peptide, can be obtained after hydrolysis of hemoglobin, the main constituent of blood red part. To recover it at a sufficient concentration for antimicrobial applications, a new sustainable technology, called electrodialysis with ultrafiltration membrane (EDUF), was investigated. The α137-141 concentration was increased about 4-fold at a feed peptide concentration of 8% with an enrichment factor above 24-fold. This feed peptide concentration also needed the lowest relative energy consumption. Moreover, this peptide fraction protected meat against microbial growth, as well as rancidity, during 14 days under refrigeration. This peptide fraction was validated as a natural preservative and substitute for synthetic additives against food spoilage. Finally, producing antimicrobial/antioxidant peptide from wastes by EDUF fits perfectly with the concept of circular economy.


Assuntos
Anti-Infecciosos/farmacologia , Sangue , Produtos da Carne/análise , Peptídeos/farmacologia , Matadouros , Animais , Antioxidantes/farmacologia , Conservantes de Alimentos , Refrigeração , Ultrafiltração
4.
Food Chem ; 197(Pt A): 1008-14, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26617047

RESUMO

Rapeseed protein isolate was subjected to alcalase digestion to obtain a protein hydrolysate that was separated into peptide fractions using electrodialysis with ultrafiltration membrane (EDUF) technology. The EDUF process (6h duration) led to isolation of three peptide fractions: anionic (recovered in KCl-1 compartment), cationic (recovered in KCl-2 compartment), and those that remained in the feed compartment, which was labeled final rapeseed protein hydrolysate (FRPH). As expected the KCl-1 peptides were enriched in negatively-charged (43.57%) while KCl-2 contained high contents of positively-charged (28.35%) amino acids. All the samples inhibited angiotensin converting enzyme (ACE) and renin activities in dose-dependent manner with original rapeseed protein hydrolysate having the least ACE-inhibitory IC50 value of 0.0932±0.0037 mg/mL while FRPH and KCl-2 had least renin-inhibitory IC50 values of 0.47±0.05 and 0.55±0.06 mg/mL, respectively. Six hours after oral administration (100 mg/kg body weight) to spontaneously hypertensive rats, the FRPH produced the maximum systolic blood pressure reduction of -51 mmHg.


Assuntos
Anti-Hipertensivos/análise , Brassica rapa/química , Peptídeos/análise , Hidrolisados de Proteína/análise , Inibidores da Enzima Conversora de Angiotensina/análise , Inibidores da Enzima Conversora de Angiotensina/química , Animais , Pressão Sanguínea/efeitos dos fármacos , Diálise , Masculino , Peptidil Dipeptidase A/farmacologia , Ratos , Ratos Endogâmicos SHR , Renina/antagonistas & inibidores , Ultrafiltração
5.
Food Chem ; 145: 66-76, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24128450

RESUMO

Flaxseed protein hydrolysate has been fractionated by electrodialysis with two ultrafiltration membranes (20 and 50 kDa) stacked in the system for the recovery of two specific cationic peptide fractions (KCl-F1 and KCl-F2). After 360 min of treatment, peptide migration increased as a function of time in KCl compartments. Moreover, the use of two different ultrafiltration membrane allowed concentration of the 300-400 and 400-500 Da molecular weight range peptides in the KCl-F1 and KCl-F2 fractions, respectively, compared to the initial hydrolysate. After mass spectrometry analysis, higher amounts of low molecular weight peptides were recovered in the KCl-F2 compartment while relatively higher molecular weight peptides were more detected in the KCl-F1 compartment. Amino acid analysis showed that His, Lys and Arg were especially concentrated in the KCl compartments. Finally, glucose-transport assay demonstrated that the KCl-F2 fraction increased glucose uptake while oral administration of KCl-F1 and final FPH decreased systolic blood pressure.


Assuntos
Anti-Hipertensivos/farmacologia , Linho/química , Hipoglicemiantes/farmacologia , Hidrolisados de Proteína/farmacologia , Aminoácidos/análise , Animais , Condutividade Elétrica , Masculino , Membranas Artificiais , Peso Molecular , Peptídeos/análise , Hidrolisados de Proteína/análise , Ratos , Ratos Endogâmicos SHR , Ultrafiltração
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa