Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Adv Mater ; 34(47): e2207040, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36121604

RESUMO

High-concentration water-in-salt (WIS) electrolytes expand the stable electrochemical window of aqueous electrolytes, leading to the advent of high-voltage (above 2 V) aqueous Li-ion batteries (ALIBs). However, the high lithium salt concentration electrolytes of ALIBs result in their high cost and deteriorate kinetic performance. Therefore, it is challenging for ALIBs to explore aqueous electrolytes with appropriate concentration to balance the electrochemical window and kinetic performance as well as the cost. In contrast to maintaining high concentrations of aqueous electrolytes (>20 m), a small number of hydrophobic cations are introduced to a much lower electrolyte concentration (13.8 m), and it is found that, compared with WIS electrolytes, ALIBs with these concentration-lowered electrolytes possess a compatible stable electrochemical window (3.23 V) and achieve better kinetic performance. These findings originate from the added cations, which form an electric-field-reinforced hydrophobic cationic sieve (HCS) that blocks water away from the anode and suppresses the hydrogen evolution reaction. Meanwhile, the lower electrolyte concentration provides significant benefits to ALIBs, including lower cost, better rate capability (lower viscosity of 18 cP and higher ionic conductivity of 22 mS cm-1 at 25 °C), and improved low-temperature performance (liquidus temperature of -10.18 °C).

2.
ACS Nano ; 10(4): 4532-7, 2016 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-26974812

RESUMO

Electric field effect in electronic double layer transistor (EDLT) configuration with ionic liquids as the dielectric materials is a powerful means of exploring various properties in different materials. Here, we demonstrate the modulation of electrical transport properties and extremely high mobility of two-dimensional electron gas at LaAlO3/SrTiO3 (LAO/STO) interface through ionic liquid-assisted electric field effect. With a change of the gate voltages, the depletion of charge carrier and the resultant enhancement of electron mobility up to 19 380 cm(2)/(V s) are realized, leading to quantum oscillations of the conductivity at the LAO/STO interface. The present results suggest that high-mobility oxide interfaces, which exhibit quantum phenomena, could be obtained by ionic liquid-assisted field effect.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa